
A b s t r a c t. This paper presents the results of a study into the

use of the texture parameters of barley kernel images in varietal

classification. A total of more than 270 textures have been calcula-

ted from the surface of single kernels and bulk grain. The measure-

ments were performed in four channels from a 24 bit image. The

results were processed statistically by variable reduction and

general discriminant analysis. Classification accuracy was more

than 99%.

K e y w o r d s: digital image analysis, automated kernel

grading, image texture analysis, discrimination, barley

INTRODUCTION

Grading systems rely on visual inspection and a compa-

rison of kernel samples. Grading decisions concerning ker-

nels and other cereal grains require a visual inspection of the

sample by trained personnel. Despite training, grading deci-

sions are subjective and they are affected by the inspector

individual experience. Digital image analysis provides an

alternative to the manual classification of biological pro-

ducts by integrating an image acquisition device with a com-

puter (Jayas et al., 2000). Digital image analysis is believed

to generate more accurate and consistent results than ana-

lyses performed by humans, delivering an objective measu-

re of the studied product features. Most kernel features ana-

lyzed in a subjective grain inspection can be rapidly measu-

red using machine vision. The application of digital image

processing (especially image texture analysis and its classi-

fication) could increase the number of correctly classified

samples, thereby limiting the necessity of using less objecti-

ve methods for grain classification. Varietal classification of

kernel samples using machine vision is an objective and

a quantitative method of measurement delivering highly re-

liable grading parameters.

The boundary coordinates of an object can be used to ex-

tract morphological features (Emadzadehi et al., 2010; Jayas

et al., 2000). Morphological features are widely used in

automatic grading, sorting, detection as well as quality inspe-

ction of food products (Gancarz et al., 2007; Jayas et al.,

2000). Grading systems relying on different morphological

features in the classification of cereal grains and varieties

have been reported in literature (Choudhary et al., 2009;

Courtois et al., 2010; Majumdar and Jayas, 2000c; Tahir et al.,

2007). Majumdar and Jayas (2000c) present an imaging sys-

tem and classification results for Canada Western Red Spring

(CWRS) wheat, Canada Western Amber Durum (CWAD)

wheat, barley, oats and rye using an algorithm based on mor-

phological features. The above authors used 23 morpholo-

gical features for the discriminant analysis. The classifica-

tion accuracy for CWRS and CWAD wheat, barley, oats and

rye was 98.9, 91.6, 97.9, 100 and 91.6%, respectively, when

the model was tested on a data set (the total number of

kernels used was 31 500).

The features extracted from the properties of pixels

inside an object are called internal image features. The most

important internal features are colour and image texture.

Some investigations dealing with the use of different colour

features were conducted for the purpose of classifying diffe-

rent cereal grains and their varieties (Neuman et al., 1989a, b;

Majumdar and Jayas, 2000a). Majumdar and Jayas (2000c)

developed an algorithm based on colour features for the

classification of individual kernels of CWRS and CWAD

wheat, barley, oats and rye. The above authors used 18 colour

features (including mean, variance, range of red, green and

blue, hue, saturation and intensity) for the discriminant ana-

lysis. The reported classification accuracy for CWRS and

CWAD wheat, barley, oats and rye was 95.7, 94.4, 94.2, 97.6,

and 92.5%, respectively, when the model was tested on a data

set (the total number of kernels used was 31 500).
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The texture of a segmented area is an important feature

for area description, which quantifies some characteristics

of the grey-level variation within the object. Four types of

methods: statistical, structural, transform-based, and model-

based are the most commonly used in the practice of extract-

ing textural features. Depending on the number of pixels

defining the local feature, statistical approaches can be sub-

divided into first, second, and higher-order statistics. The

features calculated using first-order statistics of an image are

not textural features because they depend only on the inten-

sity of individual pixels, and they are independent of the

adjacent pixels. This features simply describes the grey level

histogram of an image (Chandraratne et al., 2006). Chandra-

ratne et al. (2006) defined second-order statistics as the like-

lihood of observing a pair of grey values occurring at the end

points of a dipole of random length placed in the image at

a random location and orientation. These are the properties

of pairs of pixel values. The pixel-value run length matrix

(GLRM) encompasses higher-order statistics of the grey

level histogram (Majumdar and Jayas, 2000c). Higher-order

statistics estimate the properties of three or more pixels

occurring at specific locations relative to each other. How-

ever, several texture description methods are based on the

Fourier spectrum, wavelet transform and fractal dimension

(Li et al., 2001; Quevedo et al., 2002). The success of these

techniques lies in the type of transform used to extract textu-

ral features from the image (Bharati et al., 2004). Finally,

model-based texture analysis techniques generate an em-

pirical model of each pixel in the image based on a weighted

average of pixel intensities in its neighborhood.

Majumdar and Jayas (2000c) developed a digital image

analysis (DIA) algorithm based on the textural features of

individual grains to facilitate the classification of individual

kernels of CWRS and CWAD wheat, barley, oats and rye.

The textural features of individual kernels were extracted

from different colours of images to determine the colour or

the colour band combination that delivered the highest

classification accuracy in cereal grains. A total of 25 texture

features were used in the discriminant analysis (10 GLCM

features, 12 GLRM features, and 3 grey level features). The

original grey level value (250) was reduced to 32, 16, 8, and

4 grey level values, and the textural features extracted from

each case were used in classification. The textural features

extracted from the green colour band at maximum grey level

value 8 produced the highest classification accuracy in

cereal grains. Using the 15 most significant features, the

authors demonstrated that the classification accuracy of

CWRS and CWAD wheat, barley, oats and rye was 87.0,

95.7, 100.0, 100.0, and 81.8%, respectively, when the model

was tested on a data set.

The overall aim of this research was to develop a machine

vision system for identifying 5 varieties of Polish spring barley.

The classification accuracy of 5 barley varieties was deter-

mined using morphological and texture features.

Therefore, the objective of this study was to determine:

– the suitability of morphological features for the classifi-

cation of individual kernels of 5 barley varieties;

– the suitability of texture features for the classification of

individual kernels of 5 barley varieties;

– the effect of different colours (L, V, S) on classification

accuracy.

MATERIALS AND METHODS

The experimental material comprised kernels of five

varieties of Polish two-rowed spring barley: Blask, Stratus,

STH 5604, STH 9731, STH 523. The material was harvested

in 2005. The grain samples used in this study were obtained

from the experimental plots of a plant breeding company in

Strzelce. Kernel texture parameters were measured in indi-

vidual kernels and in bulk (Fig. 1). The region of interest

(ROI) for individual kernels was the area of kernel pro-

jection (550 kernels were analyzed) and, additionally, the

successive combination of pixels from the surface of five

kernels. A total of 64 random selected ROIs were studied in

bulk (the region was a square of 550 x 550 pixels). Two

scans were performed in bulk to measure 128 ROIs. A tex-

ture analysis was performed in four channels: brightness Y,

saturation S, channels V (V=701B-114R-587G/1402) and U

(U=886R-587G-299B/1227). Kernels were scanned in the

Epson 4490 Photo flat scanner. The produced images were

saved in 2754 x 4172 pixel format with 400 dpi resolution

and 24-bit depth. Image analyses and texture measurements

were carried out in the MaZda v. 4.5 application. From every

ROI, 277 textures were identified for each channel. The fea-

ture set used in this research (almost 277 parameters) was di-

vided into the following groups: histogram, co-occurrence

matrix (GLCM), run-length matrix (GLRM), gradient matrix,

autoregressive model and Haar wavelet derived features.

The list of textural features, as proposed by Materka (1999),

Zieliñski and Strzelecki (2002), contains parameters based

on a global statistical analysis of the grey level histogram:

– mean value of lightness, m,

– variance of lightness distribution, s
2
,

– histogram skewness, m3,

– histogram kurtosis, m4; parameters calculated on the basis

of a gradient matrix:
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Fig. 1. An image of kernel setting.



• mean value of the absolute value of gradient, GrMean,

• variance of the absolute value of gradient, GrVariance,

• skewness of the absolute value of gradient, GrSkewness,

• kurtosis of the absolute value of gradient, GrKurtosis;

parameters calculated based on the length of the pixel

sequence matrix:

– inversive second-order moment marking the influence of

short sequences (short run emphasis inverse moment),

ShrtREmph,

– inversive second-order moment marking the influence of

long sequences (long run emphasis inverse moment),

LngREmph,

– non-uniform distribution of lightness level values,

GLevNonUni,

– non-uniform distribution of sequence length values,

RLNonUni,

– fraction of sequences in image, Fraction; parameters

calculated on the basis of the co-occurrence matrix:

• angular second-order moment, AngScMom,

• contrast, Contrast,

• correlation, Correlat,

• variance of boundary distribution , SumOfSqs,

• inverse differential moment, InvDfMom,

• mean value of accumulative distribution, SumAverg,

• variance of accumulative distribution, SumVarnc,

• entropy of accumulative distribution, SumEntrp,

• entropy, Entropy,

• variance of differential distribution, DifVarnc,

– entropy of differential distribution, DifEntrp; parameters

calculated in the domain of image frequency:

• % fraction of maximum element of amplitudal spectrum

in the entire image spectrum, Ep(u,v),

• Laplacian maximum spectrum, Lp,

• distance of maximum spectrum from the centre of the

coordinate system, Rp
2
,

• angle of maximum spectrum, Ap
2
.

Data classification is one of main areas of interest in

machine learning. Data may be classified under supervision

or an unsupervised system may be applied. As regards the

former, the classification error is estimated, and with regard

to the latter – clusterization quality is assessed. Regardless

of the applied method, the correctness of classification is

determined by the discriminant ability of object attributes.

In these types of problems, a decision has to be made as

regards the number of objects and descriptive attributes that

will guarantee the highest discriminant ability. Researchers

should always be aware of the ‘curse of dimensionality’.

Foley (1972) proposed a formula for determining the mini-

mum number of objects where the maximum error of the

Bayesian classifier in a training set is not higher than 15%:

Q/N> 3, (1)

where: Q – number of objects, N – number of attributes.

The above rule has been applied in this study.

Another serious problem in the choice of classification

methodology is the ratio of non-significant to significant at-

tributes. Even in the presence of attributes characterized by

high discriminant ability, the information about the set may

not be reliable when the strength of those attributes is

‘drowned out’ by non-significant parameters. For this rea-

son, methods for reducing attribute space are applied.

Attribute extraction or reduction methods may be deployed

(Fisher coefficient, probability of error and average correla-

tion coefficient and mutual information). The three discus-

sed attribute reduction methods have been applied in this

study. Each method was employed to select 10 variables

showing the greatest discriminant effect on the population.

At the last stage, a general discriminant analysis (GDA) was

performed for varietal classification. Prior to the analyses,

variables were standardized in line with the below formula:

x
x x

j =
-

d
, (2)

where: xj – standardized variable, x – original variable, x –

mean value, d – standard deviation.

RESULTS AND DISCUSSION

The discrimination of barley varieties based on textures

calculated from the surface of a single kernel produced

unsatisfactory results. Classification error was higher than

50% regardless of the attribute selection method and the

applied discriminant analysis. The above could be due to the

fact that textures were calculated from an insufficient area

where organized structures could not be located. Sample

results of varietal classification for channel Y are presented

in Table 1. The results of a linear discriminant analysis

(LDA) are shown in Fig. 2. Varietal classification based on

variables from five kernels combined into a single ROI in

channels Y, V, U, S. To account for the produced results, the

applied software was modified to combine the surface of

several kernels into a single ROI. In theory, the objective of

this procedure was to enable the calculation of textures from

a higher number of pixels, thus improving classification

quality.
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Fig. 2. Linear discriminant analysis of individual kernels (channel Y).



Subject to variety, classification accuracy ranged from

53.06 to 84.55% (Table 1). Unsatisfactory results were

reported for variety STH 97. Individual, incorrectly classi-

fied cases were recognized in all of the analyzed experi-

mental groups. Textures based on sum entropy, entropy and

discrete wavelet transform were most often selected. The

most effective discriminating variables from every selection

method are presented in Table 2. The texture analysis

performed in other channels (S, V, U) did not improve

discrimination quality which was reported in the range of

56-85%. The best results were noted for var. Blask, and the

least satisfactory results – for var. Stratus (Table 3).

In view of the results of previous analyses, a model ac-

counting for the nine best variables from every channel was

built to improve discrimination quality in further analyses. It

was assumed that the combined effect of selected variables

from each channel will have a much greater discriminant

power than the variables from a single channel. The results

of analyses for all investigated varieties are presented in

Table 1. Discrimination quality was significantly impro-

ved, reaching 97.27% for var. Blask. The classification qua-

lity of var. Stratus also showed an improvement (86.46%).

Discriminant function coefficients for the selected va-

riables are presented in Table 4. Only variables with coef-

ficient value higher than 1 are displayed. The results of the
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Variety Classification (%) Blask STH523 STH5604 STH9731 Stratus

Individual kernels (channel Y)

Blask 18.18 64 87 75 98 28

STH523 17.33 34 61 115 132 10

STH5604 12.16 65 109 43 118 33

STH9731 27.84 71 110 46 98 26

Stratus 15.34 70 111 31 102 54

Five kernels combined into a single ROI (channel Y)

Blask 84.55 93 1 2 12 2

STH523 82.47 3 80 6 4 4

STH5604 69.16 1 10 74 6 16

STH9731 53.06 15 12 12 52 7

Stratus 70.83 1 5 14 8 68

Bulk grain (channel Y)

Blask 79.69 102 0 11 2 13

STH523 98.44 0 126 2 0 0

STH5604 75.78 0 0 97 27 4

STH9731 83.59 4 0 14 107 3

Stratus 87.50 8 0 2 6 112

Combined effect of the best textures from four channels (ROI – five kernels)

Blask 97.27 107 3 0 0 0

STH523 87.63 2 85 2 1 7

STH5604 80.37 2 3 86 1 15

STH9731 79.59 2 6 0 78 12

Stratus 86.46 1 3 7 2 83

Eevery channel and attribute selection method (ROI – bulk grain)

Blask 100.00 128 0 0 0 0

STH523 100.00 0 128 0 0 0

STH5604 98.44 0 0 126 0 2

STH9731 98.44 0 0 0 126 2

Stratus 99.22 0 0 0 1 127

T a b l e  1. Classification results of grain



analyses suggest that the first three discriminant functions

had the most profound effect on class differentiation. The

variation explained by those functions reached 97%. The

most frequently occurring texture variables were obtained

from channel S, including textures (5,0) SumEntrp, (3,0)

SumEntrp which had the greatest effect on discrimination in

each function.

The coefficients standardized for canonical variables

may be used to compare the magnitude and the direction of

the variables share of every canonical function. The value of

canonical averages describing the discriminant capacity of

every variety are presented in Fig. 3 and Table 4. Varieties

Blask and Stratus were best identified by the first discrimi-

nant function, varieties STH 5694, STH 9731 – by the se-

cond discriminant function, and var. STH 523 – by the third

function. As shown by the results in Table 4, the fourth

function had practically no effect on classification.

Bulk grain images were the next class of analyzed ima-

ges. Four channels were examined, and the ROI was a ran-

domly selected fragment of the image. The types of textures

obtained from channel Y are presented in Table 2. The re-

sults of the discriminant analysis are shown in Table 1.

Classification quality was between 75 and 98%.

The most discriminant textures calculated from channel

Y were textures based on the discrete wavelet transform.

Similarly to previous results, the textures calculated in

the remaining channels did not improve discrimination

quality. The best result was noted for channel S where var.

STH 523 was identified with more than 99% effectiveness.

The least satisfactory results were reported for varieties

Blask and STH 9731 (Table 3).

At the last stage, the results were analyzed by building

a model of the three best variables from every selection method

and channel, followed by an assessment of classification
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Number

Method of discrimination

F POE+ACC MI

Texture features

Five kernels combined into a single ROI

1 S(0,5)Entropy 135dr_GLevNonU S(0,5)Entropy

2 S(5,0)SumEntrp WavEnHH_s-4 S(2,2)SumEntrp

3 S(0,4)Entropy S(1,0)DifVarnc S(5,0)SumEntrp

4 S(5,5)SumEntrp Teta1 45dgr_GLevNonU

5 S(4,0)SumEntrp WavEnHH_s-5 S(4,0)SumEntrp

6 S(2,2)SumEntrp WavEnHL_s-4 S(3,0)SumEntrp

7 S(4,4)SumEntrp WavEnHL_s-5 S(3,3)SumEntrp

8 S(3,3)SumEntrp S(4,-4)Entropy S(0,4)Entropy

9 S(2,-2)SumEntrp S(0,4)Correlat S(5,5)SumEntrp

10 S(3,0)SumEntrp S(3,-3)Entropy S(2,-2)SumEntrp

Bulk grain (channel Y)

1 Perc. 99% WavEnHH_s-8 S(3,0)SumAverg

2 S(5,0)SumAverg Perc.99% Perc.90%

3 45dgr_LngREmph S(5,5)Correlat WavEnLL_s-8

4 WavEnLL_s-7 S(5,0)DifEntrp WavEnLL_s-6

5 WavEnLL_s-6 GrNonZeros WavEnLL_s-3

6 WavEnLL_s-4 WavEnHL_s-8 WavEnLL_s-7

7 WavEnLL_s-3 WavEnLH_s-8 WavEnLL_s-4

8 WavEnLL_s-2 WavEnHH_s-6 WavEnLL_s-1

9 WavEnLL_s-1 WavEnHH_s-7 WavEnLL_s-2

10 WavEnLL_s-5 WavEnLL_s-8 WavEnLL_s-5

T a b l e  2. Summary of texture feature
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Variety Classification (%) Blask STH523 STH5604 STH9731 Stratus

ROI- five kernels

Channel V

Blask 86.36 95 0 2 8 5

STH523 81.44 0 79 4 9 5

STH5604 72.90 4 8 78 4 13

STH9731 72.45 4 5 3 71 15

Stratus 63.54 8 3 19 5 61

Channel U

Blask 86.36 95 1 8 2 4

STH523 70.10 3 68 9 12 5

STH5604 59.18 5 11 58 11 13

STH9731 64.49 3 13 2 69 20

Stratus 56.25 4 6 8 24 54

Channel S

Blask 85.45 94 2 2 10 2

STH523 82.47 3 80 1 11 2

STH5604 74.77 3 2 80 4 18

STH9731 57.14 9 13 6 56 14

Stratus 61.46 7 0 21 9 59

ROI- bulk grain

Channel V

Blask 71.88 92 0 10 14 12

STH523 97.66 0 125 0 3 0

STH5604 82.03 14 0 105 0 9

STH9731 82.64 5 7 1 119 12

Stratus 77.68 11 0 11 3 87

Channel U

Blask 75.78 97 4 0 27 0

STH523 96.88 4 124 0 0 0

STH5604 85.16 0 0 109 3 16

STH9731 79.86 13 0 3 115 13

Stratus 83.04 3 0 8 8 93

Channel S

Blask 68.75 88 8 1 27 4

STH523 99.22 1 127 0 0 0

STH5604 85.16 0 0 109 3 16

STH9731 70.14 24 0 3 101 16

Stratus 83.93 0 0 11 7 94

T a b l e  3. Classification results for every channel and variety
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Texture features Channel Root1 Root2 Root3 Root4

Five kernels combined into a single ROI

(5,0)SumEntrp S 3.49 3.32 2.18 -

45dgr_GLevNonU V - -1.18 1.33 -

(4,-4)Entropy S 1.23 - 1.08 -

(3,0)SumEntrp S -5.85 -4.71 -3.39 -

(2,-2)SumEntrp S 2.60 3.82 - -1.61

Horzl_RLNonUni S - - -3.21 -1.24

45dgr_RLNonUni S - - 1.46 2.63

(4,-4)SumEntrp S - -1.68 - 1.73

Vertl_Fraction V - - - -2.31

S(0,1)DifEntrp V - -1.42 - 2.47

135dr_RLNonUni S - 1.11 - -1.36

S(5,-5)DifEntrp V - -1.09 - -

Cumulative percent 0.47 0.82 0.97 1.00

Bulk grain

S(0,2)SumAverg V 16.51 -23.72 12.30 5.50

WavEnLL_s-1 Y - -1.33 -1.55 -2.71

S(3,0)SumAverg S 1.18 13.57 -36.57 49.66

S(2,0)SumAverg U 8.32 251.13 -359.28 -88.96

WavEnLL_s-2 V -7.62 8.17 -1.81 7.97

S(2,-2)SumAverg S 34.61 -15.72 29.95 47.25

WavEnLL_s-1 V 15.82 -3.35 -2.20 1.98

S(4,0)SumAverg Y - -14.57 36.37 -49.61

S(3,0)SumAverg U 30.55 -226.70 400.18 -34.92

S(4,0)SumAverg U -26.19 -29.28 -35.95 146.27

S(2,2)SumAverg V -320.60 -204.45 -219.94 -117.02

S(2,-2)SumAverg V 295.24 226.24 208.98 96.88

S(3,0)SumAverg S 29.45 -242.79 276.51 280.74

Mean S 47.31 -6.81 45.54 46.68

S(0,1)SumAverg S -40.40 46.31 -60.78 -58.29

S(2,0)SumAverg S -58.25 212.98 -282.29 -286.72

Cumulative percent 0.64 0.82 0.97 1.00

Bulk grain

WavEnLL_s-8 U -0.95 0.077 0.80 -0.37

WavEnLL_s-8 Y -0.40 0.495 0.94 -0.07

Perc.99% Y 0.03 0.591 -0.30 -1.33

S(0,2)SumAverg V -2.14 0.963 -2.10 0.63

WavEnLL_s-1 S 1.90 -0.990 1.69 -0.95

Percent 90% Y 0.60 0.048 0.37 1.34

Cumulative percent 0.68 0.88 0.99 1.00

T a b l e  4. Discriminant function coefficients for combined variables from channels Y, S, V, U



88 P. ZAPOTOCZNY

Fig. 3. Dispersion of canonical values of: a – root 2 vs. root 1, b – root 3 vs. root 1, c – root 3 vs. root 2, d – root 4 vs. root 2, e – root 2 vs.

root 1, f – root 3 vs. root 1, g – 4 vs. root 1, h – root 3 vs. root 2.
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quality. A statistical model comprising 37 variables from

four channels and three selection methods significantly

improved discrimination effectiveness which reached 100%

for varieties Blask and STH 523, while more than 98%

correct classifications were reported in the remaining varie-

ties (Table 1).

Four discriminant functions were isolated, and the first

three explained variation in 97%. Textures with values

higher than 1 are presented in Table 4. The highest number

of variables in the final model were derived from channels S

and V. The values of variable coefficients were high, rea-

ching more than 200 for textures S(2,2) SumAverg and

S(2,-2) SumAverg. The canonical values for discriminant

functions classifying varieties are presented in Table 5. Var.

Blask was discriminated by the first and the second function,

var. STH 523 – by the first function and much less by the

second function, var. STH 5694 – by the second and the third

function, var. STH 9731 – by the third function, and var.

Stratus – by the first function. The above results are

presented in Fig. 3.

Table 4 and Fig. 3 present the final results of the

classification of barley varieties based on the minimum

number of variables that support the highest classification

quality. Six variables from channels Y, S, and U were se-

lected. Discrimination quality did not deteriorate in compa-

rison with the models featuring a higher number of va-

riables. Discrimination quality ranged from 99 to 100%. The

lowest discrimination effectiveness was reported for var.

Stratus, but the noted result was satisfactory.

CONCLUSIONS

1. The most satisfactory discrimination results were ob-

tained by analyzing texture parameters in bulk grain images.

2. A statistical model comprising textures from the mea-

surement of the four analyzed channels was built to improve

discrimination quality. This approach contributed to more

than 99% classification effectiveness.

3. The variable set was limited to six variables from

three channels. An equal number of textures was investi-

gated using wavelet analysis and statistical models.
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Fig.  3. Continuation.
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Texture features a* b* a b a b a b

Blask 3.01 3.44 0.25 4.28 -0.41 -0.28 -0.07 0.50

STH523 -0.14 6.78 0.24 -2.58 1.91 -1.16 -0.07 -0.60

STH5694 -0.60 -5.22 -2.22 -0.97 -0.26 -2.90 0.42 0.86

STH9731 -1.22 -0.76 2.17 -1.53 -0.53 3.49 0.40 1.01

Stratus -1.38 -4.24 -0.27 0.80 -0.62 0.86 -0.72 -1.79

*a – five kernels combined into a single ROI, b – bulk grain.

T a b l e  5. Canonical averages for every variety
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