
A b s t r a c t. This paper shows the airflow over two succes-

sive, single span tunnel greenhouses into a wind tunnel. The go-

verning Navier-Stokes and continuity equations are solved nume-

rically, using the Galerkin finite element method. The Reynolds

number is calculated according to the height of the structures and

the inlet free stream velocity and its values are varied from 0.02 to

1 200. The airflow is viscous, incompressible, steady and nomina-

ted to be two-dimensional, while the greenhouses are extended to

the whole width of the tunnel. Computed values, for the stream-

wise and cross-wise velocity and pressure, are derived by the solu-

tion of the mathematical model, at all points of the computational

flow field. The analysis of the results provided numerical predic-

tions, such as streamlines in the flow field, vortices around the

structures, distributions of stream-wise velocity and separation-

reattachment lengths of the boundary layer. The numerical proce-

dure is validated by the results of other researchers.

K e y w o r d s: greenhouse, two-dimensional viscous flow,

Navier-Stokes equations, finite elements

INTRODUCTION

Wind is one of the most important factors to be taken

into account for the construction of agricultural, urban or

industrial buildings. The geometry of agricultural structures

affects the airflow and subsequently the distribution of wind

loads. Wind affects load distribution patterns on structures

but also influences various design parameters with respect to

structural, environmental and energy aspects. Greenhouses

are usually light structures, thus wind loads may result in the

destruction or deterioration of their components. Wind can

also transfer and accumulate air, water, dust and snow in-

fluencing the operation of heating and ventilation systems.

For all these reasons, experimental, theoretical and compu-

tational study of airflow is required around and over green-

house structures, in full scale or into wind tunnel conditions

(Bournet and Boulard, 2010; Molina-Aiz et al., 2010;

Norton et al., 2007). The main advantage of the wind tunnel

is the control of airflow characteristics, thus large number of

studies includes experimental and numerical results into

wind tunnels (Erpul et al., 2000; Hwang et al., 1999; Nalbandi

et al., 2010; Psychoudaki et al., 2005 a,b).

The viscous, incompressible, steady, two-dimensional

flow, over different types of structures, has been examined

by many researchers. Macagno and Hung (1967) approach-

ed experimentally, the flow in a conduit expansion. Acrivos

et al. (1968) conducted experimental studies in a wide range

of structures and fluids. Denham and Patric (1974) studied

experimentally the flow over a backward-facing step. Armaly

et al. (1983) examined the flow over a backward-facing step

in a wind tunnel, for 70£Re£8 000. Antoniou and Bergeles

(1988) studied the effect of the structure geometry in the

recirculation region, downstream of a mounted obstacle in

a wind tunnel.

Many researchers have suggested numerical solutions

of the mathematical models which are describing the vis-

cous, steady, two-dimensional flow (Navier-Stokes and con-

tinuity equations). For this purpose, they used different ma-

thematical models in order to simulate the above equations

and different numerical methods to solve them. Macagno

and Hung (1967) used the finite differences method to solve

the Navier-Stokes and continuity equations. Leone and

Gresho (1981) simulated the steady flow over a backward-

facing step solving the Navier-Stokes equations with the

finite element method. Hong et al. (1991) transformed the

Navier-Stokes and continuity equations in function-vorticity

equations and solved them with the alternating directions

implicit method (ADI). Fragos et al. (1997) simulated the

laminar, isothermal, incompressible, two-dimensional flow,
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at steady state, over a rectangular mounted obstacle, solving

the Navier-Stokes equations with the Galerkin finite ele-

ment method. Vassiliou et al. (1998) used the finite diffe-

rences method to solve the Reynolds equations in order to

simulate the airflow outside and inside a double span tunnel

greenhouse. Boum et al. (1999) simulated the laminar, two-

dimensional flow, at steady state, around a surface mounted

obstacle, solving the Navier-Stokes equations with the finite

volume method. Psychoudaki et al. (2005a,b) studied nu-

merically the airflow over a single span tunnel greenhouse in

a wind tunnel, using the Galerkin finite element method.

This paper deals with the numerical simulation of the

airflow over two successive, single span tunnel greenhouses,

using the Navier-Stokes and continuity equations. The boun-

dary conditions are placed so as to satisfy the flow condi-

tions over two successive tunnel greenhouses, into a wind-

tunnel.

The purpose of this research is to simulate the steady

mass transfer in the particular walls.

MATERIALS AND METHODS

The dimensionless Navier-Stokes and continuity Eqs

(1) and (2), respectively, are used to solve the two-dimen-

sional, viscous, incompressible, steady flow over two succes-

sive greenhouses in a wind tunnel:

u u p uÑ =-Ñ + Ñ
1 2

Re
, (1)

Ñ =u 0 , (2)

where: u=(u*,v*) is the velocity vector of the fluid with u*

and v* its components in the x and y directions, respectively,

p is the pressure and Re is the Reynolds number.

The governing equations have been rendered dimen-

sionless by using the following characteristic magnitudes (h,

V, Po, Re), where: h is the height of the greenhouse (m), V is

the uniform approaching velocity of the fluid (inlet free

stream velocity, m s
-1

), P Vo = r 2 is the pressure intensity

(Í m
-2

), ñ is the density of the fluid (N s
2

m
-4

), Re=Vh/v is

the Reynolds number with respect to the height of the green-

house, h, and v is the kinematic viscosity of the fluid (m
2

s
-1

).

The present work studies the two-dimensional flow over

two successive tunnel greenhouses at different Reynolds

numbers, from 0.02 to 1 200. The design parameters of each

prototype greenhouse are: height (h = 3.6 m), width (w = 6.8 m)

and length (l = 16 m) (Vassiliou et al., 1998). The scale pro-

totype greenhouse-mathematical model is 1:16. The com-

putational domain is shown in Fig. 1.

A uniform free stream flow is used as boundary condi-

tion at the entrance of the computational domain. The no-slip

boundary conditions are imposed along the walls of the wind

tunnel and the greenhouse structures. The outlet boundary

condition is a free boundary condition that permits the fluid

to leave the computational domain freely without any dis-

tortion (Fragos et al., 2007; Malamataris, 1991; Papa-

nastasiou et al., 1992).

The Standard Galerkin finite element method was used

in order to solve the governing Eqs (1) and (2) along with the

appropriate initial and boundary conditions (Gresho and

Sani, 1998; Owen and Hinton, 1980; Zienkiewicz et al.,

2000). The finite element code was written in the program-

ming language VISUAL FORTRAN 90/95. The computa-

tional mesh in the flow field and the detailed mesh around

the greenhouse structures are shown in Fig. 2.

The pressure is formulated by a linear basis function,

while the velocity by a quadratic one. The unknown veloci-

ties and pressure are expanded in Galerkin basis functions.
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Fig. 1. Computational domain of nominally two-dimensional flow over two successive greenhouse structures.



Equations (1) and (2) are weighted integrally with the basis

functions. By applying the divergence theorem, the weight-

ed residuals (R Rc
i

M
i, ) become:

R u dVc
i i

V

= Ñò Y , (3)
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Re
F , (4)

where: I is the identity matrix, ( )T u u
T= Ñ + Ñ is the stress

tensor of the Newtonian fluid and Ø
i
, Ö

i
are the linear and

quadratic basic functions in Eqs (3) and (4), respectively.

The non linear system of Eqs (3) and (4) is solved nume-

rically with the Newton-Raphson method.

The flow domain is tessellated in 24 824 finite elements

with 100 031 nodes. At each node of the finite elements, the

unknown variables of the stream-wise (u*) and the cross-

wise (v*) velocities are numerically calculated. Also, the

pressure is calculated at the edge nodes of the finite ele-

ments. The resulting linear system consists of 225 302 un-

knowns. Each Reynolds number step needs three iterations

to converge quadratically. The maximum error of the Newton-

Raphson method is 10
-6

for velocities and 5 10
-4

for pres-

sure calculations. Each iteration uses 2.81 CPU minutes, on

a computer desktop (Intel Core 2 Duo E4600 2.40 GHZ and

2GB RAM). Details of the computational mesh and the flow

characteristics are shown in Table 1.

RESULTS AND DISCUSION

The streamlines along the computational domain (L*=

50), is presented in Fig. 3, for selected Reynolds numbers

(50£Re£1 200). Three recirculation regions of airflow are

observed at the streamlines distributions, the first one up-

stream of the 1st greenhouse, the second one between the

successive greenhouses and the third one downstream of the

2nd greenhouse. The particular geometry of these green-

houses causes the boundary layer separation which leads to

the formation of the recirculation regions. It should be noted

that the recirculation flow length is increasing as the

Reynolds number is increasing, downstream of the 2nd

greenhouse.
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Fig. 2. Computational mesh of present work (a), details mesh around two successive greenhouses (b).
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Details of the streamlines upstream of the first green-

house and distributions of the stream-wise velocity (u*) for dif-

ferent Reynolds numbers (50£Re³1 200) are presented in

Fig. 4. The separation of the flow takes place just before the

vertical side edge of the first greenhouse. The separation

point of the airflow is moving away from the edge. The for-

med vortex is growing in size as the Reynolds number is

increasing, in the upstream end of the first greenhouse. The

velocity distribution is uniform, u*= 1, at the entrance and

almost to the total height of the wind tunnel. Negative values

of stream-wise velocity are observed in the vicinity of the

upstream side of the first greenhouse, in the recirculation

region.

Figure 5 shows details of the streamlines over two suc-

cessive greenhouses and the development of the boundary

layer at the stream-wise velocity (u*) profiles, regarding to

the wind tunnel height, for 50£Re£1 200. It is observed

that the computed streamlines, from the reattachment point

(x*=5) and beyond, smoothly surround both of the green-

houses roofs. Another separation point is appeared over the

roof, which is more obvious as the Reynolds number is

increasing. For Re³200, it is observed that the separation of

flow starts at the middle of the first greenhouse and it is
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Parameters Values

Dimensionless height of wind

tunnel (H)
8

Dimensionless length  of wind

tunnel (L)
50

Reynolds Numbers 0.02-1 200

Number of elements (NE) 24 824

Number of nodes (NH) 100 031

Number of unknowns (NP) 225 302

CPU time per iteration 2.81 min

Computer used
Intel Core 2 Duo E4600

2.40 GHZ 2GB RAM

Location of first greenhouse 5£x£6.888

Location of second greenhouse 7.888£x£9.776

Height of greenhouse 0£y£1

T a b l e  1. Data of computational mesh

Fig. 3. Streamlines of the flow for Reynolds numbers: 50, 800 and 1 200.
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Fig. 4. Computed streamlines and distributions of stream-wise

velocity (u*) upstream of the first greenhouse for different

Reynolds number (50£Re£1 200).

Fig. 5. Details of streamlines and distributions of stream-wise velo-

city (u*) over two successive greenhouses for different Reynolds

number (50£Re£1 200).



reattached at the half of the second one. Between the green-

house structures, a single vortex is developed with a nega-

tive spin, when Re£200. When Re³400, two opposite vor-

tices appear, one negative and one positive. The upper

negative rotating flow is united with the rotating flow down-

stream of the second greenhouse, when Re³800. The

existence of local vortices in the flow can generate lift forces

and causes damages to the greenhouses, if the vortex inten-

sity is increased due to an increase of Reynolds number. The

indicative distributions of the stream-wise velocity (u*)

present constant values outside the boundary layer. At the

boundary layer, velocity values are reduced smoothly and in

the recirculation area become zero to obtain negative values

(reverse air flow) and to become zero again at the wall in

accordance with the boundary conditions.

Figure 6 depicts the details of the streamlines down-

stream of the second greenhouse, for 50£Re£1 200. It is

clear that the recirculation length is increasing as Reynolds

number is increasing. It can be seen that negative stream-

wise velocity values are presented in all recirculation re-

gions of flow (Figs 4-6), but higher absolute negative values

of stream-wise velocity are observed downstream of the

second greenhouse.

Figure 7 presents a qualitative comparison of the stream-

lines among the present study (case c) and those of Leone

and Gresho (1981) in a rectangular construction (case a) and

Psychoudaki et al. (2005a,b) in a single span tunnel green-

house (case b), for Re = 200. The similarities between the

recirculation flow regions, upstream and downstream of the

structures are obvious for all cases. It must be noted that in
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Fig. 6. Computed streamlines and distributions of stream-wise velocity (u*) downstream of the second greenhouse for different Reynolds

number (50£Re£1 200).



all cases, the equations of Navier-Stokes were numerically

solved by the finite element method. In cases (a) and (b), it is

observed that there is a similarity in the boundary layer

separation process over the structure roof, which creates

a reverse flow downstream of the structure. On the contrary,

in the present study (case c) the separation of the boundary

layer begins in the downstream end of the second green-

house, due to the larger total width of the successive green-

houses. In cases (b) and (c), more detailed streamlines are ob-

served in relation to case (a), due to better boundary condi-

tions and to the choice of a computational domain, which in-

cludes a greater number of elements, nodes and unknowns.

The calculated separated and reattachment lengths of

the boundary layer, with regard to the Reynolds number are

presented in Fig. 8, cases (a) and (b) respectively. In case (a),

the variation of the separation length (x*S) is shown

upstream of the first greenhouse. The separation length is

increasing as the Reynolds number is increasing. It is also

observed that the increase of the separation length is more

intense, when 10£Re£500, while it becomes less intense,

when 600£Re£1 200. The best fitting equation describing

the separate length distribution is a 3rd degree polynomial,

with a correlation coefficient value of R
2

= 0.9951 (R
2

ap-

proaching to 1). In case (b), the variation of the reattachment

length (x**R) is depicted downstream of the second

greenhouse, where x**R = 0 in the downstream base of the

second greenhouse. The reattachment length is increasing as

the Reynolds number is increasing. The best fitting equation

describing the reattachment length distribution is a 2nd

degree polynomial, with a correlation coefficient value R
2

=

0.9926 (R
2

approaching to 1).

In order to validate the mathematical code, the calcula-

ted results of the present study are compared with other com-

putational and experimental results, regarding to the separation-

reattachment lengths of boundary layer. In Fig. 9a, the stu-

dies of Fragos et al. (1997) and Hong et al. (1991), (rectangu-

lar obstacles, cases y8 and y3, respectively) and Psychoudaki

et al. (2005a,b), (single span tunnel greenhouse, case y2) are
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Fig. 7. Qualitative comparison of streamlines for Re = 200: a – Leone and Gresho (1981), b – Psychoudaki et al. (2005 a,b) and c – present

work.

a

b

c



compared with the present study (two successive single

span tunnel greenhouses, case y1) regarding to the sepa-

ration length (x*S). It is observed that the separation length

is increasing as the Reynolds number is increasing in all

cases. All distributions of the separation length can be

expressed by a 3rd degree polynomial with a correlation

coefficient from R
2
=0.9853 to R

2
=1. Each equation has a

different slope depending on the geometry of the structures.

It is also observed that the curve of the separation length in

case (y2) is almost similar compared with case (y1), for

0.02<R<760. The slight difference is owed to the width of

the structures. In the other two cases (y3 and y8), concerning

to rectangular structures, the slope of the curves are steeper.

This variation is attributed to the different geometry of these

structures (presence of a sharp upstream edge).

In Fig. 9b, experimental data of Acrivos et al. (1968),

Hong et al. (1991), Boum et al. (1999), (rectangular obstac-

les, cases y4, y8 and y5, respectively) and Denham and Patric

(1974), Armaly et al. (1983), (backward-facing step, cases

y7 and y6, respectively), are compared with computational

data of Fragos et al. (1997), (rectangular obstacle, case y3),

Psychoudaki et al. (2005a, b), (single span tunnel green-

house, case y2) and the present study (two successive single

span tunnel greenhouses, case y1). It can be seen that the

reattachment length is influenced by the Reynolds number

and the geometry of the obstacles or the structures. In parti-

cular, the curves of the reattachment length in cases (y3, y4
and y5), which are rectangular structures or 'bluff bodies'

with small width and Re<100, coincide and have larger slopes

compared to the other cases. The curves in cases (y6 and y7),

(backward-facing step) and the present study for Re<300,

also coincide but they have much smaller slope than the

rectangular structures. Consequently, the sharp edges of the

rectangular, flat, horizontal roof result in an increased

recirculation length, in contrast to the tunnel roofs with

smooth edges (geometry effect). For the same Reynolds

number, the reattachment length, in two successive single

span tunnel greenhouses case (y1) is smaller compared to

that of the single span tunnel greenhouse case (y2), for

0.02<Re<760. It should be noticed that the total width of the

successive single span tunnel greenhouses is larger than the

width of the single span tunnel greenhouse. This result is in

good agreement with the conclusion of Hwang et al. (1999),

reporting that an increase of the structure width reduces the

reattachment length, (x**R). The distribution curves of the

reattachment length, for all studies, are described by 2nd

degree polynomials with a correlation coefficient R
2 » 0.99,

approximately.
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Fig. 8. Separation length upstream of the first greenhouse (x*s) – a, and reattachment length downstream of the second greenhouse

(x**R) – b.

a
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CONCLUSIONS

1. The distribution of the airflow streamlines, along the

computational domain for various Reynolds numbers,

shows three recirculation regions of flow (vortices), due to

the separation of the boundary layer which is owed to the

presence of the greenhouses. These regions are upstream of

the first greenhouse, between the greenhouses and down-

stream of the second greenhouse. The recirculation regions

and the vortices distribution are predicted reasonably well

by the proposed numerical approach.

2. Negative stream-wise velocity values are presented in

each recirculation region of flow. The vortex formation is

larger downstream of the second greenhouse. The formation

of local flow vortices may generate lift forces which can

cause damages to the greenhouses.

3. The separation length of the boundary layer, up-

stream of the first greenhouse, is increasing as the Reynolds

number is increasing. The slope of the separation length

distribution is affected by the greenhouses geometry. The

correlation between the separation length and the Reynolds

number is described by a 3rd degree polynomial, with

correlation coefficient R
2
>0.9951 (R

2
approaching to 1).

4. The reattachment length of the boundary layer, down-

stream of the second greenhouse, is directly correlated with

the Reynolds number and the greenhouses geometry. By in-

creasing the Reynolds number, an increase of reattachment

length is obviously presented, but not proportional, due to

the geometry of the greenhouse structures. Also, the length

of reattachment is decreasing as the width of the green-

houses is increasing. The correlation between the reattach-

ment length and the Reynolds number is described by a 2nd

degree polynomial, with correlation coefficient R
2

> 0.9926

(R
2

approaching to 1).

5. The results of this study compared with computa-

tional and experimental results of other researchers confirm

that the used mathematical code approximates with accu-

racy the airflow over two successive greenhouses.
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Fig. 9. Comparison of the calculated separation (a) and reattachment length (b) of the boundary layer versus computational and

experimental data by other researches.
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6. The studied numerical procedure combined with the

escalating development of computers can be used to predict

two or three dimensional, unsteady flow, at different geo-

metries and flow conditions, in the external and internal

environment of several agricultural structures.
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