
A b s t r a c t. The objective of this study was to evaluate the

role of ASTER and digital elevation model (DEM) data for classi-

fying soils and agricultural lands. The obtained results from the

image processing and spectral reflection revealed that the green

plants have higher reflection in near infrared than wilted and bare

soils. The results also demonstrated that that the highest reflections

in visible and middle infrared are mainly related to the saline and

gypsiferous soils. Besides, the lowest reflection of the saline soils

is attributed to for the semi-wet soils with bright salt crusts. It is due

to the moisture effect and sponge like surfaces of the crusts that can

be due to a great absorbtion in sun radiations. All ASTER bands

are able to separate the stony, rough and uneven land classes from

the homogenous saline soils wit the soft and black appearance.

Based on the obtained results we may generally conclude that for

separating the saline classes with different surface characteristics

digital elevation model (DEM) has a key role in improving

accuracy. This result also indicated that the visible and near

infrared bands can be mainly used for separating the salt crust soils

from some other soil classes.

K e y w o r d s: ASTER, DEM, bare soil, arid zones, supervised

classification

INTRODUCTION

Soil is an essential part of terrestrial ecosystem. Many

soil scientists, technicians, and farmers have studied its

physico-chemical properties for many years for agriculture

and soil conservation. This should usually require field

sampling and laboratory analysis that are time-consuming

and destructive to the samples being analyzed. Remotely

sensed data are an alternative that provide reliable infor-

mation at low cost based on a non-destructive technique

(Chuvieco and Huete, 2010). The use of remote sensing ima-

gery for mapping, assessing and monitoring of agricultural

crop conditions and production has been steadily increasing

in recent years. Air-borne and/or space borne imaging sys-

tems are now increasingly being used for various spatial-

temporal scales at different mapping objectives and imple-

mentation levels.

One of the methods of soil and other land cover type

characteristics recognition is the remote sensing and study

of spectral reflectance of the surface cover types (Piekar-

czyk, 2001; Yuan et al., 2005). Soil is a complex pheno-

menon, and the spectral reflection of that, is the resultant of

soil physicochemical characteristics. Thus, using physical

models in order to study the spectral attributes of soil is

difficult (Clark and Roush, 1984; Law et al., 2003; Shalaby

and Tateishi, 2007). Using ancillary information such as ad-

vanced very high resolution radiometer (AVHRR) data and

digital elevation model (DEM) derivatives from the national

to continental level surveys is among the most promising

tools for geographers and soil surveyors (Ali and Kotb,

2010; Dobos et al., 2000). DEM is increasingly incorporated

in agriculture, natural resource management, engineering,

geographical information system (GIS) and remote sensing

analysis, partly because of the wide range of potential appli-

cations, and partly because of trend from two dimensional to

three dimensional spatial data capture and visualization

(Shrestha and Zinck, 2001, Aboudel-magd and Tantont,

2003). The integration of image processing and spatial ana-

lysis functions in GIS improved the overall classification ac-

curacy result from 67 to 94%. Fahsi et al. (2000), showed

that DEM data considerably improved the classifcation accu-

racy by reducing the effect of relief on satellite images. The

variation coefficient for homogeneous cover type areas was

substantially reduced for all the spectral bands on the cor-

rected image. Consequently, the overall accuracy and the
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Kappa coefficient were notably improved on the corrected

image. The individual accuracies of the different classes

also increased.

Buhe et al. (2007) used ASTER (Advanced Spaceborne

Thermal Emission and Reflection Radiometer) data for re-

cognition of land covers at a region in China. 3 band combi-

nations for coloured image are very difficult because the 14

bands would have 364, three combinations. Thus, an index

was tried instead of the 3 band combination. The index was

based on the total variance and the least correlation coef-

ficient of the bands. The suggested index was to be highly

useful. Satio et al. (2001), prepared farm land soils using

ASTER data analysis comparison of the map with current

map is evidence for the good conformity of them. Interaction

between cover attributes eg same wheat but in an early stage

or in a very wet patch produced some classification errors.

Breunig et al. (2009), used ASTER sensor data in order to

soil studies, results showed emissivity and elevation data

revealed variations in soil composition with topography in

specific parts of the landscape. Despite that, ASTER sensi-

tivity to changes in biophysical conditions indicates that

these data are useful for mapping within-field variability

where the focus is confined to a limited area. The three bands

that produced the best average separability are the layers per-

taining to vegetation indices: ratio NIR (Near Infra REd) /R

(Red), Sqrt (NIR/R) and NIR-R. The aim of this study is to ana-

lyze the seperability of arid zone soils using the 14 ASTER

bands. It is often regarded that the spectral data, of the local

biophysical setting and crop calendar information, is useful

in a broad-level crop type discrimination and plant stress

detection (Cloutis, 1999). Recently launched satellite based

imaging sensors, equipped with improved spatial, spectral

and radiometric resolutions, offer enhanced the capabilities

in comparison of the previous systems.

The aim of this study is investigate the utility of ASTER

multispectral data, that is integrated with digital elevation

model, as an ancillary and improved method for characte-

rizing agricultural and bare land. Evaluation of visible short

wave infrared and thermal infrared, data of the sensor, for

recognition of arid saline and non saline soils and also soils

with various amounts of stoniness and crusts is possible to

be separated by this method.

MATERIALS AND METHODS

The study area is located in Esfahan province (34°-34°

30‘N, 50°- 50° 15‘E). It is the partially area of central kavir

of Iran (Fig. 1). Aran region has long-term and warm sum-

mers and temperate winters. Average annual rainfall was

138.8 mm (30 years). The precipitation starts from Novem-

ber and ends in April. Temperature and moisture regime of

the soils of this area is thermic and aridic, respectively.

In order to asses satellite data capability in separation of

lands from ASTER sensor data, topographic map, geo- logy

map and field study were used. The study was carried out in

six stages:

1 - initial image processing,

2 - field study,

3 - separation of photomorphic units on images (PMU),

4 - digital elevation model (DEM) generation,

5 - images classification and accuracy assessments,

6 - post classification.

An attempt was made to evaluate the lands separability,

mean standard deviation and for the variance of test samples.

ASTER is the second sensor in the set of EOS astronomy.

This has been put on TERRA Platform in 1991 by America

and Japan. ASTER consists of three different subsystems:
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Fig. 1. Location of the study area in Esfahan province, Iran.



– the visible and near-infrared (VNIR) has three bands with

a spatial resolution of 15 m, and an additional backward

telescope for stereo;

– the shortwave infrared (SWIR) has 6 bands with a spatial

resolution of 30 m;

– the thermal infrared (TIR) has 5 bands with a spatial

resolution of 90 m.

Each subsystem operates in a different spectral region,

with its own telescopes, and is built by a different Japanese

company. The spectral band passes are shown in Table 1. In

addition, one more telescope is used to view backward in the

near-infrared spectral band (band 3B) for stereoscopic capa-

bility. In this study, ASTER-L1B Images which are relevant

to the date August 10, 2002 was used. The received data are

having Geotiff format which were read by ILWIS 3.3.The

images were registered to topographic maps of 1:50000

scale which have 16 control points and the UTM as a pro-

jection system were accepted.

Height values were added as attributes to the contour

vectors derived from the 20 m contour separations. Height

values of the contour lines were interpolated to create

raster-based DEM (Figs 2 and 3), using GIS software as:
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Composition

No.

ASTER bands
Transformed

layer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 DEM

BI, PC1,

PC2, PC3,

PC4

1 * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * *

3 * * * *

4 * * * * *

5 * * * *

6 * * * * *

7 *

8 * * * * * * * * * *

9 * * * * * * * * * * *

10 * * * * * * * * * *

11 * * * * * * * * * * *

T a b l e  1. Different combination of digital layers

Fig. 2. On screen digitizing of counter line (a) and vector to raster transformation and interpolation to DEM generation (b).

a b



Hp =H1+ (D2/(D1+D2) (H1-H2) (1)

where: Hp – value of output pixel, H1, H2 are value of con-

tour line, D1, D2 are output pixel distance to contour line.

The accuracy of DEM was also investigated by compa-

ring the elevation figures of ten locations with the original

topographic map. Figure 4 shows the diagram of ASTER

data integrated with DEM in order to soil and agricultural

land characterizing.

Selection of suitable bands is one of the major levels

prior to digital data processing and getting the spectral infor-

mation. The three – composites resulted from 14 spectral

bands equals 364 combinations. Study and selection of a sui-

table combination out of them is time consuming and ex-

pensive with lots of errors. Thus, uses of statistical indices

are profitable in terms of expressed, true accuracy in bands

selection and saving the time. Therefore optimum index

factors are calculated once for the 14 bands of the sensor and

one more time for the thermal bands. Results of principal

component analysis of ASTER data indicate that around

99% of the information is concentrated in the PC1 toPC4.

Also, the false colour composite image of PC1, PC2 and

PC3 are well displayed saline and gypsic lands, lands ha-

ving more than 35% stoniness and lands having soft crusts.

The image resulted of brightness index is displayed of saline
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Fig. 3. Digital elevation model of study area.
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Fig. 4. Diagram of agricultural land and soil characterizing based on ASTER data and DEM.



lands with more clearance. In order to assess the importance

of 14 bands, different band combination have been prepared.

The combinations, consisting of the sensor bands, indices

and combinations of optimum index factor (Table 1).

Table 2 is the bands correlation which show 11, 12, 13

and 14th bands (8. 125-11.65 µm) having inverse correlation

with visible (VNIR) and shortwave infrared (SWIR) bands.

The 13 and 14th bands having high correlation with one ano-

ther and the trend of their correlation with other bands stay

constant. The 1and 2 bands of the visible range have high

correlation to each other but less correlation with middle

infrareds. The correlation trend of the VNIR and SWIR bands

are almost the same but the cause of their difference, is the

correlation degree of them. Thus, low correlation of the ther-

mal bands with VNIR and SWIR, implies good information

in the bands.

According to visual interpretation of photomorphic

units on false colour composite images (FCC321), 18 train-

ing classes (Table 3) were recognized and along with feature

space displaying, the training zone pixels were chosen. In

order to choose samples which are homogenous and of enough

distribution on the image, all the images were analyzed as

smaller windows, on choosing the samples, feature space of

them were drawn and assessed to segment the classes. In the

end the samples were corrected by using mean, standard

deviation, feature space and spectral curve of them.

In each information – spectral class and subclass (Table 3)

which have homogenous reflection on images, some parts of

them were chosen as training samples Coordinates of the

above mentioned regions were taken out and saved as point

file in ILWIS, and then the file was saved in GPS. The sites

distribution in the units is based on stratified random

sampling, that is, around 4 to 8 sites were selected in each

photomorphic unit on a scale of which surface. In order to in-

crease the sampling accuracy, each site was selected in a re-

gion where is introducer to a significant area and the region

does have the least disturbance and maximum homogeneity

in terms of ground truths. Sites of saline and barren lands

were selected in a way that each site has area of 10 ha at least,

and bare surface or a surface having the least vegetation cover.

Agricultural sites, formed forests and tree groups, were se-

lected in order to be recognized. Acceptable method for eva-

luating image and the corresponding ground pixels is the sam-

pling of 4×4 pixel area (Ben-Dor, 2001; Matinfar, 2006).

Thus, in each 4×4 pixel (where GPS located) the sam-

ples were taken from the control and the 4 pixels around the

central pixel. The sites are including the profile, auger and

surface sampling points. Then surface samples of each site

were mixed together (composite sample) and around 2 kg of

which were taken to soil laboratory for physicochemical ana-

lysis, all the visible ground truth and outcrops of each site

were recorded that is, a quantitative and descriptive sheet of

the sites was written in which coordination system of the

sites was taken down in UTM.

RESULTS AND DISCUSSION

As explained earlier, upon separation of homogenous

units (PMU) homogenous areas for each class are chosen on

the monitor. Note that the training samples are selected

according to their distribution of them in the spectral space
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

B1 1

B2 0.98 1

B3 0.76 0.77 1

B4 0.85 0.9 0.85 1

B5 0.81 0.86 0.67 0.92 1

B6 0.79 0.84 0.66 0.9 0.99 1

B7 0.8 0.86 0.66 0.9 0.99 0.99 1

B8 0.82 0.87 0.66 0.9 0.98 0.99 0.99 1

B9 0.68 0.75 0.54 0.8 0.95 0.97 0.96 0.96 1

B10 -0.16 -0.08 -0.42 -0.1 0.04 0.04 0.03 0.02 0.09 1

B11 -0.24 -0.17 -0.51 -0.18 0 0.01 0 -0.01 0.1 0.96 1

B12 -0.11 -0.05 -0.42 -0.08 0.07 0.07 0.07 0.06 0.12 0.97 0.97 1

B13 -0.07 0 -0.37 -0.03 0.13 0.12 0.13 0.11 0.17 0.98 0.94 0.97 1 1

B14 -0.07 0 -0.37 -0.03 0.12 0.11 0.12 0.11 0.16 0.98 0.94 0.96 1 1

T a b l e  2. Correlation matrix between ASTER data in Aran area



of the selected bands. These samples must also have the

same spectral characteristics. In order to know the pattern of

the spectral classes, feature space of red band versus near

infrared band was plotted. Feature space showed, Soil plant

mixtures, plant residues, near harvest framings and green

plants, distribution pattern (Fig. 5), in the lack of plant cover,

soil line clusters are present, but as the plant intensity in-

creases, the near infrared reflection increase and on the

contrary red reflections reduces. Within the red band,

chlorophyll is the cause of energy absorption and reflection

reductions, but within the middle infrared the water in plants

tissues absorbs the energy and reduces the reflections. Thus

as the plant intensity increases the above mention ratios

decreases, that is, in the triangle head and close to the zero

point, the clusters are related to green plants and the base of

the triangle is related to the bare soil.

Different band combination was classified. Total ASTER

bands and DEM layer have a greatest accuracy, so feature

space of this combination in order to asses the land cover

class separation. The training samples are consisting of four

groups (Fig. 5) that show a triangle which base (soil line)

states kinds of soils, head states green cover and between

states both soil and plant together. The first group is the bare
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Information classes Code Soil name (U.S.D.A.) Salinity class Surface condition

Afforestation AF Typic Haplosalids S4 Smooth crust, 20 to 60% canopy intensity

Bad Land BL – – Rill erosion, <5% canopy

Crop 1 FA1 Typic Haplocalcids S1 Residual, bare soil

Crop 2 FA2 Typic Haplocalcids S1 Crust, destroyed farm

Crop 3 FA3 Typic Haplocalcids S0 Irrigated farm, intensity canopy

Crop 5 FA5 Typic Torrifluvents S1 Residual

Crop 6 FA6 Typic Haplocalcids S2 Cotton

Orchard OR Typic Torrifluvents S0 Prunus armenica, prunus domestica,punica granatum,

>60% canopy

Pasture R3 Typic  Haplosalids S4 Artemisia, crust, 30 to 35% canopy

Sand Dune SD – – Sand accumulation, <5% canopy

Soil 2 S2 Typic Haplogypsids S1 Gravel 30 to 35%, 30% gypsum

Soil 3 S3 Typic Torriorthents S0 60 to 70% gravel, non saline

Soil 4 S 4 Typic Haplosalids S4 Shrieked crust, very saline, bare soil

Soil 5 S5 Typic Haplosalids S4 Smooth and puffy crust, very saline, bare soil

Soil 6 S6 Gypsic  Aquisalids S4 Gypsum and salt, very saline, bare soil

Soil 7 S7 Typic  Aquisalids S4 Salty crust, very saline, bare soil

Soil 9 S 9 Typic  Aquisalids S4 Very saline, bare soil, salty polygon

T a b l e  3. Information classes in Aran area

Orchard

Green plant
Mixed Pixel

Bare Soil
(Soil Line)

Fig. 5. Feature space B2 versus B3, show spectral-information class

distribution.



soil samples. It is distributed in the 2-dimensional space over

the soil line, dark non saline soils, soil (3) and then saline and

moist soils, soil (9) are distributed near the zero point. At the

end of the line, saline and gypsic Soils, soil (5), soil (6) and

soil (7) are distributed. The second group is the samples

relevant to the mixture of soil and plant; on the other hand

the farming (1), farming (2), pasture, farming (5) and

afforestated classes. The third group is the samples relevant

to orchards and the forth group is the green and healthy

covers consisting of farming (3) and farming (6).

Green plants and tree groups , farming (6) , farming (3) and

orchards have wore absorption of spectral range of red, becau-

se chlorophyll receives the energy and decreases the reflec-

tion amount (Fig. 6a). Note that the visible and reflective

infrared bands are different in green plants cover separation,

Fig. 6b shows ability of thermal bands in separation of green

plants it seems that roughly similar moisture conditions of

the green plants cover cause the least separation (lowest

Dnorm) in spectral range of thermal bands and mixed pixels

formation.

Dnorm=|m1-m2|/ (s1+s2) , (2)

m – class mean, s – class variance.

Spectral curve of the bare soils states that salt and

gypsum crystals presences with no moisture, cause increase

in reflections and dark gravels as well as sponge like salt

crusts with moisture, case reduction in the reflections. The

Fig. 7a shows reflection of soil (3), soil (5), soil (6), soil (7)

and soil (9). As it is seen, soil class (3) has the least reflection

among all other bands and the soil class (6) has the most

reflection. Soil class (3) indicates bare lands which have 60-

70% dark brownish gravels without salinity and alkalinity

signs, but the soil class (6) indicates non-gravelly saline and

gypsic lands. Another look in the training areas graphs, ex-

presses that, soil class (6) has the most reflection in all wave

lengths, and white crystals of gypsum and salt on these soils

surfaces cause the most reflection. In the lands while the soil

class (9) which consists of saline and moist saline soil (lower

layers), has the least reflection among saline classes. This is

because the sponge – like crusts and moisture absorb the

received energy and reduces refection.

Soil classes of 5 with 6 and 7 with 6 have confusion

(Fig. 7a). Figure 7b shows that soils 6 and 7 have high abi-

lity in separation only in the range of visible and reflective

infrared and the least ability in the range of other bands.

Figure 7c shows soils 5 and 6 have high most separation only

in the range of visible spectral. It seems that the spectral

behaviours of salt and salt crusts within shortwave and

theme infrared is important factor of mixed pixel formation.

According to the results of different step of classifica-

tion the second combination has the highest and the seventh

combination the least overall, user and producer accuracy

and kappa coefficient (Table 4). The 3rd and 5th have the

most amount of optimum index factor (OIF), But the accu-

racy is less than other band combination, which seems the

interference cases in classification accuracy increase than

optimum index for arid regions. As the table 4 gives, the

Kappa coefficient is less than overall accuracy the reason is

the reduction of chance in the coefficient calculation be-

cause other elements as well as diagonal elements of the

error matrix are considered in the calculation.

One of the important factors that affect the accuracy of

classified results is different feature with similar reflectance

such as soil (3) and soil (9). But combination of effective

layer such as DEM with ASTER bands make it possible to

separate each feature, so increase the accuracy of these land

cover (Fig. 8). Also Tajgardan et al. (2010),showed similar

results in their study of prediction  the spatial variability of

surface soil salinity in an arid area in northern Iran.

Table 4 show the classifications accuracy, for the second

combination the overall accuracy is 79, 66%, kappa coeffi-

cient 0.781 and producer and user accuracy are 85.86 and

86.86%, respectively (Jensen, 1996; Lillesand, 2004). How

much the kappa is more, representing better classification. If
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Fig. 6. Spectral curve of soil, pasture and green plant (a), separation between different canopies (b).
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all of the classes are classified correctly the kappa will be 1.

As the non-diagonal pixels amount decreases the kappa will

increase which is sign of error reduction in the classification.

Among the bare lands classes, soil (3) has the highest pro-

ducer and user accuracy which are 92 and 100%, respecti-

vely. The classes are of different conditions from others, for

having 60-70% dark gravels on surface and 95% in profile,

and also, having the highest elevation in the study area.

Thus, on overlaying the spatial information of the classes,

the classes are separated with more accuracy than others.

CONCLUSIONS

1. ASTER sensor spectral bands does separate healthy

green plant covers from scattered covers and soil plant mix-

ture, but lands of soil and plant mixture, have interference

with non saline and gravely land. It also shows that soils ha-

ving salt crust (soil 7) which are covered by salt, gypsum and

sand (soil 6) are separated by visible and near infrared

bands, but not in the thermal range for the similar behaviour

of energy radiation.
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Combination Producer accuracy User accuracy Overall accuracy Kappa coefficient

Total ASTER bands 80.1 79.2 74.4 72.5

Total ASTER bands and DEM 85.9 86.9 79.7 78.1

1, 2, 3rd ASTER bands 73.4 73.5 65.8 61.5

1, 2, 3rd ASTER bands and DEM 80.3 81.2 74.1 71.5

1, 3, 10 and 11th bands 73.5 72.8 65.8 63.5

1, 3, 10 and 11th band and DEM 80.1 80.8 73.3 71.3

BI, PC1, PC2, PC3, PC4 56.5 52.2 48.0 45.5

T a b l e  4. Accuracy assessment results

Fig. 7. Spectral reflectance of saline and non saline soils (a), separability of saline soils (b) and (c).

cb
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2. Soils which have soft and dark uneven surfaces are well

separated in visible and thermal wave. This is because of

different colour, roughness and effect of them in absorption

and reflection of energy within thermal wave. But the soils

are not separated in the short wave infrared bands, for the

same humidity conditions of them, they have alike behaviour.

3. Land surface with gypsum and fine sand separated in

all bands, especially within visible and near infrared is nota-

ble which is valuated to the surface characteristics differences.

4. The increase accuracy of classification and classes

separation which have spectral interference, digital eleva-

tion model (DEM) can be added in order to separate the clas-

ses more accurately as well as increase in the overall accu-

racy. The comparison of band combination classification re-

sults also indicates that, use of all ASTER sensor bands, are

more suitable for recognition of land use/land cover in arid

and semi arid area.
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