
A b s t r a c t. Natural drying characteristics of sesame seeds

(SS) were investigated under indoor conditions with both forced

convection (FC) and natural convection (NC) of air. The drying

kinetics of SS was characterized in terms of effective diffusion

coefficient and resistance to diffusion. For the FC method, seeds

were dried at a constant air velocity of 1.1 m s-1 and air temperature

and relative humidity in the range of 25-29°C and 35-40%, respec-

tively. For the NC method, air temperature and relative humidity

were in the range of 32-36 and 30-35%, respectively. Six thin-layer

drying models, namely, Khazaei, Peleg, Page, Handerson and

Pabis, logarithmic, and Weibull, were fitted to drying data.

Modelling the correlation between moisture ratio with drying time

and drying method was also carried out using artificial neural

networks (ANN).

SS of average initial moisture content of around 50.8% (d.b.)

were dried to the final moisture content of about 3.0-3.7% (d.b.)

until no further changes in their mass were observed. The drying of

sesame seeds took place in the falling rate period. During the FC

experiments, the time to reach the final moisture content of 3% was

found to be 400 min. The same moisture content of sesame seeds

was found to achieve its equilibrium moisture content (3.7%) after

900 min when seeds were dried using the NC method. Thus, the FC

drying times were around 55% shorter than the NC drying times.

In the FC and NC drying methods, the drying rates of sesame

seeds at the very beginning times of drying were equal to 22.47 and

6.9 (g H2O kg-1 dry matter min-1), respectively. The effective water

diffusion coefficients of SS under FC and NC conditions were

3.1×10-11 and 1.1×10-11 m2 s-1, respectively. Corresponding values

for overall resistance to diffusion were 70.8×105 and 19.6×106 m2 s

kg-1, respectively.

The results showed that the Khazaei model gave better fit than

the other five models. The Peleg and logarithmic models also had

an acceptable accuracy in predicting the drying kinetics of SS. The

ANN technology was shown to be a useful tool for predicting the

moisture ratio of SS as a function of drying method and drying

time. The optimal ANN model was found to be a 2-6-3-1 structure

with hyperbolic tangent transfer function. This optimal model was

capable of predicting the moisture ratio with R2 higher than 0.998,

RMSE of less than 0.0192 and MRE about 2.63%. It was concluded

that ANN represented SS drying characteristics better than the

mathematical models.

K e y w o r d s: sesame seed, natural drying, neural network,

mathematical modelling

INTRODUCTION

Sesame (Sesamum indicum L.) is one of the oldest

cultivated plants in the world. Sesame is harvested either for

the whole seed used in baking, for confectionery purposes,

cake, and flour, or for cooking-oil extraction. Sesame seed

contains approximately 45% by weight of oil, compared to

20% of seed weight for soybeans, and 25% protein. It is a

good source of essential amino acids and minerals. It is also

consumed for its medicinal qualities.

Dehulling has always been a major problem for the

sesame industry and a variety of solutions have been sought.

The dehulling process, no matter what the method, always

involves wetting the seed to loosen and remove hulls from

the seed. Dehulled seed is then washed and dried to produce

a premium bakery and confectionary product.

Since sesame seeds (SS) are more sensitive to high dry-

ing temperature, seeds are dried naturally indoor, with either

natural or forced convection air. Natural drying is a well-

known, popular, and inexpensive method to reduce the

moisture contents of agricultural products, which prevents

deterioration within a period of time regarded as the safe

storage period.
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No paper was found in the literature on the drying

characteristics of SS. The availability of such information is

relevant for understanding the drying process of the SS.

Also, effective design of drying and storage systems for SS

needs knowledge of their drying kinetics. They determine

the end point to which the seeds must be dried in order to

achieve a stable product with optimal moisture content, and

yield a figure for the theoretical minimum amount of energy

required to remove a given amount of water from the seeds.

One of the most important aspects of drying technology,

especially for industrial processes, is modelling of the drying

processes. The purpose of modelling is to allow the engineers

to choose the most appropriate method of drying for a given

product as well as to choose suitable operating conditions.

Full-scale experimentation for different products and system

configurations is sometimes costly and not possible. And so,

the prediction of drying kinetics of specific crops under

various conditions is very useful in the design and optimisa-

tion of dryers. The use of a simulation model is also a va-

luable tool for prediction of performance of drying systems.

Thin-layer drying models can be categorized as theore-

tical, semi-theoretical, and empirical models. The most

widely studied theoretical model in thin layer drying of

various foods is given by solution of Fick second law. The

Fick law in spherical coordinates can be expressed as

(Crank, 1975):
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General series solution of the Fick second law in

spherical coordinates with the assumptions of moisture

migration being by diffusion, negligible shrinkage, and

constant diffusion and temperature is given as follows

(Crank, 1975; Kashaninejad et al., 2007):
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Drying of many food products, such as amaranth grain

(Resio et al., 2004), wheat (Gaston et al., 2004), chestnuts

(Guine and Fernandes, 2006), hull-less seed pumpkin (Sacilik,

2007), and pistachio nuts (Kashaninejad et al., 2007) has

been successfully predicted using Fick second law.

Some semi-theoretical drying models that have been wide-

ly used in the literature are presented in form of models, na-

mely: the Page, the Henderson and Pabis, and the Logari-

thmic models (Table 1). These models have been widely used

to model drying of different agricultural products (Akpinar et

al., 2006; Gunhan et al., 2005; Midilli and Kucuk, 2003;

Togrul and Pehlivan, 2004; Yaldiz and Ertekin, 2001). In

these models the term of moisture ratio, Mr, is usually

expressed as:
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The Weibull distribution function, which is an empirical

model, describes the process as a sequence of probabilistic

events. This model is able to describe the behaviour of
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Nomenclature

A dimensionless drying constant

B dimensionless drying constant

De effective water diffusivity, (m2s-1)

Do constant equivalent to diffusivity at infinitely high

temperature, (m2s-1)

Ea activation energy, (kJ mol-1)

K drying rate constant (1 min-1)

K1 page rate constant (min/% d.b.)

K2 page capacity constant (1/% d.b.)

Mt moisture content at any time of drying (% d.b.)

Mr moisture ratio

Me final moisture content, (% d.b.)

Mo initial moisture content, (% d.b.)

MrM,i ith measured moisture ratio

MrP,i ith predicted moisture ratio

n dimensionless drying constant

N number of observations

R2 coefficients of determination

Re equivalent radius of seeds being dried, (mm)

Rds resistance to diffusion, (m2 s kg-1)

t drying time (min)

T drying temperature (°C)

Wo initial weight of the product (g)

Wt weight of the product to be dried at any time (g)

Abbreviations

ANN artificial neural networks

SS sesame seeds

T a b l e 1. Mathematical models applied to the drying curves of the

sesame seeds

Model name Model Eq.

Page M Exp Ktr
n� 	( ) (4)

Henderson and Pabis M AExp Ktr � 	( ) (5)

Logarithmic M AExp Kt Cr � 	 �( ) (6)

Weibull M Exp
t

r � 	( ( ) )
�

� (7)



systems or events that have some degree of variability, such

as drying, water absorption, and soluble solids losses during

hydration of grains and dried fruits (Machado et al., 1999;

Marabi et al., 2004). Typically, the Weibull distribution is

described by two parameters: the scale parameter, � which is

related to the reciprocal of the process rate constant, and the

shape parameter, �. When �� 1, the Weibull distribution re-

duces to 1st order kinetics (Machado et al., 1999). As theore-

tical models are complex and cumbersome, sometimes

researchers have been interested to use simple empirical and

semi-empirical models to fit drying data of food materials.

The Peleg model (Peleg, 1988) is also a simple empiri-

cal model that has been used successfully to describe the

drying behaviour of agricultural products (Sopade and

Kaimur, 1999). The linearized form of the Peleg equation to

regress the moisture content versus drying time is as follows

(Sopade and Kaimur, 1999; Turhan et al., 2002):
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The drying rate (R) can be obtained from first derivative

of the Peleg equation as follows (Turhan et al., 2002):
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The Peleg rate constant K1 relates to drying rate at the

very beginning times of drying (Ro) ie t � 0 min:
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Although all the above models have been successful in

explaining the drying kinetics of agricultural products, they

are just related to drying time and do not include the inter-

action effect of other related parameters. Thus, it is important

to researchers to find a model that incorporates a large num-

ber of variables. However, the relationships between drying

kinetics and related variables are almost always very compli-

cated and highly non-linear, which makes developing a single,

general, and accurate mathematical model almost impos-

sible. This problem can be overcome by using the soft com-

puting methods same as artificial neural networks.

Khazaei model

Drying behaviour, like viscoelastic properties of food

products, is a time-dependent behaviour (Mohsenin, 1986).

Therefore, it is possible to model these two different proper-

ties of agricultural materials with the same model as follows:
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In this model, time of retardation, Trel, is the time

required to reach the moisture content of seeds to about 63%

of the total removed moisture, Mret (Fig. 1). In other words,

Tret shows the rate of drying of seeds in the first phase of the

process. The highest amount of this term shows the higher

rate of drying in the first phase of the process. Also the Krel

shows the rate of drying in the relaxation phase and is

calculated with determining the slope of the tangent line on

the end part of graph (Fig. 1).

The advantage of this model over the empirical and

semi-empirical models is the ability to determine all of the

parameters directly from drying curves (Fig. 1). The other

benefit of this model in respect with other drying models is

its ability to describe the second phase of drying (relaxation

phase). The empirical and semi-empirical models are able

just to describe the drying behaviour in the initial times of

the process (first phase).

This model, in the form of moisture ratio, may presented

as follows:

M
M M

M M

M

M M
e

K

M M
r

t s

o s

ret

o s

t Tret rel

o

�
	

	
� 	

	
	

�

�
�

�

�
�	

	

	
1 1

/

s

t ,

(12)

M A Be Ct A Be Ctr
t Trel bt� � 	 � � 		 	/

. (13)

METHODOLOGY OF ANN MODELLING

An artificial neural network (ANN) is a computer pro-

gram capable of learning from examples through iteration,

without requiring prior knowledge of the relationships bet-

ween process and product parameters (Chegini et al., 2007).

This technique has been successfully applied to the pre-

diction of drying kinetics of seeds, vegetables, and fruits

(Erenturk and Erenturk, 2007; Farkas et al., 2000; Kaminski

et al., 1998; Satish and Setty, 2005).

The best example of a neural network is probably the

human brain. In fact, the human brain is the most complex

and powerful structure known today. Artificial neural net-

works are composed of simple elements operating in parallel

(Razmi-Rad et al., 2007). These elements are inspired by

biological nervous systems. The unit element of an ANN is

the neuron (node). As in nature, the network function is

determined largely by the connections between the neurons

(Tsoukalas and Uhrig, 1997).
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Fig 1. Graphical method to determine the constant parameters in

Khazaei model (Eq. (11)).



Figure 2 illustrates how information is processed through

a single node. The node receives weighted signals from

other nodes through its incoming connections. First, these

are added (summation function). The result is then passed

through an activation function, the outcome being the acti-

vation of the node. For each of the outgoing connections, this

activation value is multiplied with the specific weight and

transferred to the next neuron (Chegini et al., 2007;

Kalogirou, 2000).

The ANN modelling is carried out in two steps; the first

step is to train the network whereas the second is to test the

network with data which were not used for training. It is

important that all the information the network needs to learn

is supplied to the network as a data set. The training data set

is used for the training of the network, usually by suitable

adaptation of synaptic weights. Indeed, the knowledge

obtained during training phase is not stored as equations or

in a knowledge base, but is distributed throughout the

network in the form of connection weights between neurons

(Mittal and Zhang, 2000).

A training data set is a group of matched input and

output patterns. Each pattern may be represented as (X1, X2
…., Xm, Y1, …., Yn) where X and Y represent independent and

dependent variables, respectively, and n and m are the

number of independent and dependent variables, respecti-

vely. The outputs are the dependent variables that the net-

work produces for the corresponding input. When each

pattern is read, the network uses the input data to produce an

output which is then compared to the training pattern ie the

correct or desired output. If there is a difference, the con-

nection weights (usually, but not always) are altered in such

a direction that the error is decreased. After the network has

run through all the input patterns, if the error is still greater

than the maximum desired tolerance, the ANN runs through

all the input patterns repeatedly until all the errors are within

the required tolerance. When the training reaches a satis-

factory level, the network holds the weights constant and the

trained network can be used to make decisions, identify pat-

terns, or define associations in new input data sets not used

to train it (Chegini et al., 2007; Kalogirou, 2000). A learning

rule defines how the network weights should be adjusted

between each training cycle (epoch). One of the most fre-

quently used training algorithms is the back-propagation

paradigm (BP).

The specific objectives of this study were to:

• determine the natural drying kinetics of sesame seeds

under both natural convection and forced convection air,

• mathematical modelling of thin layer drying of sesame

seeds,

• develop an ANN model for the prediction of moisture

ratio of sesame seeds as a function of drying time and

drying method,

• compare the performance of the ANN model with that for

the mathematical models.

MATERIALS AND METHODS

Sample preparation

The sesame seeds (SS) used in this study were obtained

from a local market in Pakdast, Iran. The seeds contained

56.87% crude fat, 23.04% crude protein, 13.25% carbo-

hydrate, 3.52% ash and 3.4% moisture. The seeds were

cleaned by manually removing all foreign matter such as

stones, dirt and broken seeds. The initial moisture content of

the seeds was determined using the ASAE standard oven

method (ASAE, 1997) and was found to be 3.5% (d.b.).

Physical properties of sesame seeds

The size of randomly selected 100 seeds was determi-

ned from the principal dimensions. For each seed, the length,

width and thickness were measured using a micrometer

gauge reading to 0.001 mm. The geometric mean diameter

(Gmd) and sphericity (�) of sesame seeds were calculated

by using the following relationships (Altuntas et al., 2005):

G LWTmd � ( ) /1 3 , (14)
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G

L

md . (15)

The surface area of the seeds was found by analogy with

a sphere of the same geometric mean diameter, using the

expression cited by Altuntas et al. (2005) and Tunde-

Akintunde and Akintunde (2004):

S Gmd� � 2 (16)

To evaluate 100 seed mass, seven samples, each of 100

seeds, were picked at random and weighed using a balance

with a precision of 0.001 g and the average reading was

taken (Mwithiga and Sifuna, 2006). The volume to surface

area ratio (V/S) of the sesame seeds was calculated using the

expression cited by Verma and Prasad (1999):

V

S

G

S

Gmd md� �
�

�
3

6 6
. (17)
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Fig. 2. Information processing in an artificial neural network unit.



The true density (�k ) of SS was determined by the tolue-

ne displacement method (Demir et al., 2002). Bulk density

(�b ) of SS was determined by filling the grains in a cylinder

of known volume (200 cm
3
) and weighing in an electronic

balance. The bulk density was then calculated from the mass

and volume. The porosity was calculated using the follow-

ing equation (Mwithiga and Sifuna, 2006):

�
� �

�
�

	k b

k

100 . (18)

All the physical properties of the sesame seeds were

investigated at moisture content of 3.5% (d.b.).

Experimental set-up

The tests were conducted to study the thin-layer

drying characteristics of sesame seeds (SS) under indoor

drying conditions with both natural and forced con-

vection air. The drying experiments were performed

during July and August, 2005, in Pakdasht, Iran, with

minimum and maximum air temperatures of around 32

and 36°C over a one day drying cycle with relatively low

air humidity which never exceed 40%.

Wet samples of SS used in the drying tests were pre-

pared by soaking the seeds in distilled water (T = 25�C) for

about 6 h to reach 50.8% (d.b.) moisture content. The wet

samples of the seeds were then dried under indoor drying

with both natural convection (NC) and forced convection

(FC) air. A schematic diagram of the experimental set-up is

shown in Fig. 3. Wire mesh trays of 150 mm in diameter and

70 mm in depth were used to place the seed samples on. The

trays were placed at a reasonable height above a high steel

frame to ensure a reasonable level of air circulation under

and around the SS.

During the FC drying experiments, the mean values of

temperature and the relative humidity of air ranged from 25

to 29�C and from 35 to 40%, respectively. Corresponding

values for the NC drying experiments were in the range of 32

to 36�C and 30 to 35%, respectively.

The air temperatures, relative humidity, and air velocity

just above the sample bed surface were measured during the

experiments. The air velocity was measured using a digital

anemometer (TESTO, 405-VI, Taipei, Taiwan) with a mea-

surement range of 0-15 m s
-1

. In all FC drying tests, the air

velocity just above the samples bed was constant and was

equal to 1.1 m s
-1

. A thermo-hygrometer (Extech 444731,

Shenzhen, China) was used to measure air temperature and

relative humidity.

Experimental procedure

For each drying test, a sample of 30 g of moist seeds was

evenly spread on the wire mesh baskets as thin-layer with

a thickness of approximately 0.4 cm. The moisture content loss

of the samples was accomplished by periodical weighing of

the mass, using a digital balance, having an accuracy of 0.01 g.

Seed samples were weighed at various time intervals, ran-

ging from 5 min at the beginning of the drying to 80 min du-

ring the last stage of the process. The instantaneous moisture

content on dry basis (Mt) was calculated from the following

equation (El-Sebaii et al., 2002):

M
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W
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1
1 100 d.b. . (19)

The drying process was continued until no further

change in their mass was observed. Each experiment was

replicated three times and the average values were used for

analysis.
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a

Fig. 3. Flow diagram of indoor natural drying of sesame seeds:

a) forced convection air and, b) natural convection air.

b



Mathematical modelling

For both the FC and NC drying methods, the moisture

content data were converted to the most useful moisture ratio

expression and then curve fitting computations with the dry-

ing time were done by using the drying models in Table 1.

In this study, the moisture ratio Mr was simplified to Mt / Mo

instead of Eq. (3). Previous studies have shown that if the

values of the equilibrium moisture content (Me) be relatively

small compared to Mo, Mr may be reduced to Mt /Mo

(Akpinar et al., 2006; Doymaz, 2006; Gunhan et al., 2005;

Midilli and Kucuk, 2003; Togrul and Pehlivan, 2003).

The parameters of the mathematical models were estima-

ted using a non-linear regression procedure performed using

the SigmaPlot software (SigmaPlot 6.0 scientific graphing

software from SPSS Inc., Chicago). The suitability of the

models was evaluated and compared using the coefficient of

determination, R
2
, and root mean square error, RMSE

(Sacilik et al., 2006):

RMSE

M M

N

r M i r p i
i

n

�
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�
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, ,

2

1
. (20)

The higher values for R
2

and the lower value for RMSE

the better the goodness of fit (Akpinar, et al., 2006; Togrul

and Pehlivan, 2003; Yaldiz and Ertekin, 2001).

In this study, the Khazaei and Peleg models (Eqs (7) and

(11)) were also used to regress the moisture content versus

drying time. For this matter, the moisture content data were

converted to the M-Mo expression and then curve fitting

computations with the drying time were done by using the

SigmaPlot software to find the constants of the models.

Neural networks model development

Using the drying tests, a total of 32 patterns was obtai-

ned, each with 3 components (X1, X2, Y1), which were used

for training and testing the neural networks. Two of the com-

ponents were the input variables, drying method and drying

time, whereas the last component was the output variable

representing the moisture ratio (Fig. 4). The 32 patterns were

randomly divided into 22 and 10 data sets for the training

and testing of the neural networks, respectively.

A supervised artificial neural network (ANN) trained by

back-propagation algorithms was developed to predict

moisture ratio based on the two input variables. The back-

propagation algorithm was implemented using the ANN

Toolbox of the MATLAB computer-aided design software

(The MathWorks Inc., Natick, MA).

Three steps were used to select an optimal ANN model.

The first step was to determine the best number of hidden

layers, number of neurons in each hidden layer, and activa-

tion function. The best four models were selected based on

training and prediction accuracy. The second step was to

work with these four selected models to find optimum epoch

size. The third step was to find optimum learning rate and

momentum of the ANN. Once a given neural network was

trained using the appropriate training dataset, its perfor-

mance was then evaluated using the appropriate testing data-

set. This is very important to avoid over-training the system.

The performance of the various ANN configurations

was compared using the coefficient of determination (R
2
)

and RMSE (Eq. (20)). The final network was selected on the

basis of the lowest error on train and test sets of data.

In one- and two-layer networks, the number of hidden

neurons varied from 0 to 20 with a step of 3. Three forms of

activation function were also tried for each structure:

sigmoid, linear, and hyperbolic tangent.

RESULTS AND DISCUSSION

Physical properties

The dimensional properties of sesame seeds are given in

Table 2. The length of the seeds ranged from 2.61 to 3.77

mm, width ranged from 1.4 to 2.05 mm, and thickness

ranged from 0.66 to 1.01 mm. The geometric mean diameter

ranged from 1.42 to 1.91 mm, while the sphericity of the

seeds ranged from 0.45 to 0.59. The relationships between

length, width, thickness and geometric mean diameter are

given by the following equation:

L W T Gmd� � �1.788 3.76 1.886 . (21)

The sesame seeds used in this study had a true density of

1230-1234 kg m
-3

. The mean value of volume to surface

area ratio (V/S) of single seed was found to be 2.8x10
-4

m

from Eq. (17). Based on the equivalent dimensions given in

Table 2, the mean value of surface area per unit mass

(specific surface area) of the seeds was equal to 2.74 mm
2

mg
-1

. The physical properties of the sesame seeds used in

this study are in general agreement with those reported by

Tunde-Akintunde and Akintunde (2004).
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Fig. 4. ANN model used for sesame moisture ratio prediction.

Input layer First hidden layer Second hidden layer Output layer

Drying method

Drying time

Bias 1 Bias 2

Moisture

ratio



Drying characteristics

The drying curves for thin layer drying of sesame seeds

under indoor drying with both natural convection (NC) and

forced convection (FC) conditions are shown in Fig. 5. The

SS of average initial moisture content of around 50.8%(d.b.)

were dried to the final moisture content of about 3-3.7%

(d.b.) until no further changes in their mass were observed. It

is evident from these curves that the moisture content de-

creased continuously with the drying time. It can be seen that

the drying curve consists of an initial fast reduction in mois-

ture (first phase) followed by a constant drying rate period

(relaxation phase). As expected, the drying method had a sig-

nificant effect on the moisture content of the samples.

During the FC experiments, the time to reach the final

moisture content of 3% was found to be 400 min. The same

moisture content of sesame seeds was found to achieve its

equilibrium moisture content (3.7%) after 900 min when

seeds were dried using the NC method. Thus, the FC drying

times were around 55% shorter than the NC air drying times.

Moisture content data versus drying time were fitted

into Khazaei and Peleg model (Eqs (7) and (11)) for both NC

and FC drying methods. Table 3 presents the results of

non-linear regression analysis of fitting the two models to

the experimental data and comparison criteria used to

evaluate goodness of fit namely, R
2

and RMSE. Both

Khazaei and Peleg models provided an excellent fit to the

experimental data with a value for R
2

of greater than 0.996,

indicating a good fit. The values of RMSE obtained from the

two models were less than 1.08, which is in the acceptable

range. However, the values for RMSE obtained from the

Khazaei model were significantly lower than those attained

from the Peleg model. Hence, the Khazaei model was

considered the best model in the present study to represent

the natural drying behaviour of sesame seeds. Figure 5

suggests the experimental moisture contents fitted with the

Khazaei and Peleg model for both NC and FC drying

conditions. It can be seen from these curves there was a good

conformity between experimental and predicted moisture

content data.

Moisture content evolution in time is the first indication

of how and to what extent the drying process is going on. It is

used as an element of comparison. The drying rate, dM/dt, as

a function of time or moisture content, is also an important

parameter. The changes in the drying rates of sesame seeds

versus moisture content are shown in Fig. 6. It is apparent

that drying rate decreased continuously with improving

drying time. The results indicated that diffusion was the

most likely physical mechanism governing moisture

movement in the SS samples. The results were generally in

agreement with some literature studies on drying of various

food products (Doymaz, 2006; Lahsasni et al., 2004; Togrul

and Pehlivan, 2004).

In Fig. 6, the drying rate data at the very beginning times

of drying ie at t = 0 min were determined from the Peleg

model (Eq. (9)). Peleg drying rate constant K1 is a constant
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T a b l e 2. Some physical characteristics of sesame seeds

Parameter Mean Min Max SD*

Length (mm) 3.14 2.61 3.77 0.20

Width (mm) 1.76 1.4 2.05 0.11

Thickness (mm) 0.84 0.66 1.01 0.07

Geometric mean dia (mm) 1.67 1.42 1.91 0.09

Sphericity (%) 0.53 0.45 0.59 0.02

Mass of 100 seeds (g) 0.275 0.143 0.296 0.02

Surface area (mm2) 8.77 6.41 11.50 0.95

Volume of a single seed (mm3) 2.47 1.54 3.69 0.39

Volume per unit surface area

(mm3 mm-2)

0.28 0.24 0.32 0.01

Bulk density (kg m-3) 577 575 579 1.30

True density (kg m-3) 1231 1230 1234 2.40

Porosity (%) 53.1 53.0 53.2 0.01

*Standard deviation

Model
Drying

method

Parameters

R2 RMSEMo

(% d.b.)

Mrel

(% d.b.)

Trel

(min)

Krel

(% d.b. min-1)

Khazaei FC 50.8 43.861 26.18 0.0113 0.9993 0.011

NC 50.8 43.799 84.746 0.0041 0.9996 0.008

Peleg K1 (% d.b. min-1) K2 (% d.b. min-1)

FC 0.445 0.0193 0.996 1.02

NC 1.444 0.0188 0.996 1.08

T a b l e 3. Parameter estimation and curve fitting criteria for the Khazaei and Peleg models for the thin layer natural drying of sesame

seeds



related to mass transfer rate eg the lower the K1, the higher

the initial drying rate. The SS dried using FC and NC

methods exhibited a statistically significant difference in K1

(Table 3). The drying rate of SS dried by FC and NC me-

thods at the very beginning times of drying were equal to

22.47 and 6.9 (g H2O kg
-1

dry matter min
-1

), respectively.

According to Eq. (22), the mean drying rates of SS dried by

the FC and NC methods were equal to 1.2 and 0.5 (g H2O

kg
-1

dry matter min
-1

), respectively.

Mean drying rate =
M Me o	

Total drying time
. (22)

As indicated in Fig. 6, there is no constant drying rate

period in the drying of SS and the two drying operations are

seen to occur in the falling rate period. During the falling rate

period, the drying rate decreases continuously with decrea-

sing moisture content and increasing drying time. In the

falling rate period the material surface is no longer saturated

with water and drying rate is controlled by diffusion of mois-

ture from the interior of the seeds to the surface (Diamante

and Munro, 1993). These results are in agreement with the

observations of earlier researchers of other seeds and grains

(Doymaz, 2006; Ece and Cihan, 1993; Sacilik, 2007).

According to Fig. 5, free water dries during a first short

period and subsequently intermolecular water dries during

longer periods. At the beginning of the drying, free water

was available and the rate of drying was controlled by free

water on the surface or outer layers of seeds. The drying rate

then decreased lower than the first stage of the drying period.

At this stage, water was no longer free; water in the seeds

was held by molecular adsorption and capillary condensa-

tion. It can, therefore, be considered a diffusion-controlled

process in which the rate of moisture removal is limited by

diffusion of moisture from inside to the surface of the pro-

duct. Previous studies have also shown that the drying of

biological material is a diffusion-controlled process and

may be represented well by Fick law.

As expected, the rate of drying of sesame seeds under

the FC drying method was much higher than that at the NC

method (Fig. 6). It can be seen from Fig. 6 that the influence

of drying conditions on drying rate is markedly higher when

the moisture is higher. At moisture content of less than 7%

(d.b.) there is no difference in the drying rates between the

two drying methods, indicating the significance of internal

resistance to mass transfer at low water content in the

material.

Calculation of effective diffusivity of sesame seeds

Fick second law of diffusion was used to calculate the

effective water diffusivity of sesame seeds under FC and NC

drying conditions. There are three different forms of Fick

equation that depend on the shape of the product being dried.

Crank (1975) gave analytical solutions of Eq. (1) for various

regularly shaped bodies such as rectangular, cylindrical, and

spherical. Therefore, Fick second law is expressed in three

basic coordinate systems: Cartesian, cylindrical, and sphe-

rical, which corresponds to the following cases: an infinite

plate exposed to drying, an infinite cylinder, and a sphere. In

this study, although sesame seed appears to be flat material,

but since the seed thickness/width ratio (0.48) is not small

enough to neglect diffusion through the edge surfaces, so the

seeds used in the drying tests cannot be supposed to be flat

material. Hence, an analytical solution for a sphere was cho-

sen as the starting point to be used in determining the dif-

fusion coefficients of sesame seeds (Eq. (2)). Other resear-

chers have also reported similar assumptions for white rice

and wheat kernels (Kang and Delwiche, 2000; Steffe and

Singh, 1980).

For long drying periods, the Fick second law equation

(Eq. (2)) can be further simplified to only the first term of the

series and the moisture ratio Mr was reduced to Mt/Mo

342 J. KHAZAEI ans S. DANESHMANDI

Fig. 5. Comparison of the thin layer drying characteristics of sesa-

me seeds in drying by FC and NC methods.
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Fig. 6. Variation of the drying rate of the sesame seeds versus

moisture content.
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because Me was relatively small compared to Mt and Mo

(Doymaz, 2006). Then, Eq. (2) can be written in logarithmic

form of:

ln ln
M

M

D t

R

t

o

e

e

� 	
�

�

�
�

�

�

�
�

6

2

2

2�

�
. (23)

The diffusion coefficient can be calculated from the

slope of the left-hand side of Eq. (23) versus time (Fig. 7).

It is expected that a plot of ln(Mr) versus drying time gives

a straight line with a slope of (Kashaninejad et al., 2007):

Slope�	
� 2

2

D

R

e

e

. (24)

It is evident from Fig. 7 that Eq. (23) is valid for ln(Mr) <

-1.3 (Mr<0.3) and not in the practical range of drying of high

moisture seeds. Then, the complete series of the Fick second

law equation (Eq. (2)) would be required for this work, but

this includes numerous shortcomings previously listed by

Giner and Mascheroni (2001). Marquez et al. (2006) have

also reported similar limitations of Eq. (23) for drying of

rose hip fruits.

In spite of this limitation, the diffusion coefficient of

many grains and fruits such as amaranth, wheat, chestnuts,

hull-less seed pumpkin, pistachio nuts, and black grapes

have been successfully predicted using this simplified form

of Fick second law, Eq. (23), (Doymaz, 2006 ; Gaston et al.,

2004; Guine and Fernandes, 2006; Kashaninejad et al.,

2007; Resio et al., 2004 ; Sacilik, 2007).

The mean equivalent radius of sesame seeds was

determined as equal to 0.84 mm (Table 2). The calculated

values of effective diffusion coefficient, De, of sesame seeds

for the FC and NC drying conditions were 3.1×10
-11

and

1.1×10
-11

m
2

s
-1

, respectively. The value of De for the FC

drying method was 2.8-fold higher than that for the NC

method. The values of De lay in general within the range of

10
-11

to 10
-9

m
2

s
-1

for food materials dried using the con-

ventional and solar drying methods (Doymaz, 2006).

During the falling rate period and with continuous

decrease of the drying rate, there also appears resistance to

water vapour diffusion. The overall resistance to diffusion,

Rds, is characterized by the following equation (Toure and

Nkembo, 2004):

ln( )M
S

mR
tr

ds

�	 , (25)

where: Rds is the overall resistance to diffusion (m
2

s kg
-1

).

From Eq. (25), the resistance to diffusion can be determined

by the slope of the straight line obtained by plotting the

experimental data from ln (Mr) as a function of drying time

(Fig. 7). The overall resistance to diffusion of sesame seeds

dried by the FC and NC drying methods was calculated as

equal to 70.8×10
5

and 19.6×10
6

m
2

s kg
-1

, respectively. As

expected, the drying method had a significant effect on

resistance to diffusion.

Mathematical models for fitting drying curves

The results of statistical analyses undertaken for the

Page, Handerson and Pabis, logarithmic, and Weibull

models are given in Table 4. The best model describing the

thin layer drying characteristics of sesame seeds was chosen

as the one with the highest R
2

value and the lowest RMSE

value. The proposed models gave R
2

values greater than

0.958. Comparison of R
2

and RMSE values of the four

models showed that the logarithmic model gave better fit

than the other models. Figures 8 and 9 show the experimen-

tal and predicted moisture ratios with the four models versus

drying time for the two drying methods.

The shape parameter (�) of the Weibull model is a beha-

viour index that depends on the process mechanism and the

higher its value the slower is the process in the initial phase

(Cunha et al., 1998; Machado et al., 1999). Like the effecti-

ve diffusion coefficient, the shape parameter (�) of the

Weibull model showed a great difference for the two dry-

ing methods. Indeed, the reciprocals of K1 in the Peleg mo-

del and � in Weibull model could be compared to the effec-

tive diffusion coefficient of the diffusion models since those

three parameters are the kinetic constants for each model.

The scale parameter � of the Weibull model is also an im-

portant parameter. As discussed by Hahn and Shapiro (1967),

Nelson (1969), and Gacula and Kubala (1975), � defines the

time needed to accomplish approximately 63% of the pro-

cess, like the Trel parameter in the Khazaei model. The mean

values of Trel parameter of the Khazaei model determined

for the FC and NC drying methods were 26.18 and 84.746

min, respectively. Corresponding values for the scale para-

meter � of the Weibull model were 56.43 and 148.68 min,

respectively. In general, Trel and � parameters are indicators

of the drying rate in the first phase of drying. According to

the Trel and � values in Tables 3 and 4, it can be found that

the time needed to dry sesame seeds using the NC method

was about 2.6 times higher than that for the FC method.

DRYING CHARACTERISTICS OF SESAME SEEDS 343

Drying time, min

0 200 400 600 800 1000

-3

-2

-1

0

FC method

NC method

Fig. 7. Comparison of ln(Mr) versus drying time for sesame seeds.

L
n
(M

r)



Of all the models tested, namely: Khazaei, Peleg, Page,

Handerson and Pabis, logarithmic, and Weibull, the Khazaei

model gave better predictions than the others, and

satisfactorily described the thin-layer drying characteristics

of sesame seeds. The Khazaei model offered the lowest

value for RMSE, followed by the logarithmic and the Peleg

model.

Neural networks modelling

In this study, an ANN model was developed to predict

the moisture ratio of sesame seeds based on the drying time

and drying method. The training error associated with diffe-

rent one- and two-hidden layer ANN configurations is pre-

sented in Fig. 10. It is evident that the learning ability of the

two-hidden layer networks was significantly higher than

that for one-hidden layer. This indicates that increasing the

number of hidden layers increased the learning capability of

the networks. Also, the number of neurons in each hidden

layer had a significant effect on learning performance of the

ANN models. The number of neurons within each hidden

layer can be varied based on the complexity of the problem

and data set. However, a well trained ANN model is the key

to build an ANN model to be able to predict outputs precisely.

Among the various structures, models of good training

performance were produced by the 2-13-9-1 (RMSE of

0.0120), 2-15-5-1 (RMSE of 0.0132), 2-6-3-1 (RMSE of

0.0165), and 2-12-3-1 (RMSE of 0.0179) structures with

hyperbolic tangent transfer function in the hidden and output

layers. Indeed, a well-trained ANN model is the key to

design and analysis of the input and output relations.

In order to avoid possible over-training, the primary aim

is to obtain an ANN model with a minimal dimension and

minimum errors in training and testing. In this study, the

most suitable ANN to correlate the moisture ratio with
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Model R2 RMSE

x10-2

FC method

Page (K=0.0877, n=0.6183) 0.958 4.7

Henderson and Pabis (A=0.9514, K=0.0255) 0.968 5.5

Logarithmic (A=0.9042, K=0.0331, C=0.0788) 0.997 1.6

Weibull (� = 0.6444, � = 56.43) 0.963 5.6

NC method

Page (K=0.0217, n=0.7661) 0.974 4.6

Henderson and Pabis (A=0.9611, K=0.0080) 0.979 4.8

Logarithmic (A=0.8996, K=0.0106, C=0.0881) 0.999 0.9

Weibull (� = 0.7661, � = 148.68) 0.974 4.6

T a b l e 4. Parameter estimation (R2) and RMSE of the four drying models for natural drying of sesame seeds

Fig. 8. Variation of moisture ratios versus drying time for sesame

seeds being dried using FC method.

Fig. 9. Variation of moisture ratios versus drying time for sesame

seeds being dried using NC method.



drying time and drying method was selected as 2-6-3-1. For

this structure, the best combinations of the ANN parameters

that were used for predicting the moisture ratio are shown in

Table 5. These results confirm that given sufficient hidden

units, multi-layer feed-forward network architectures can

approximate virtually any function of interest to any desired

degree of accuracy.

Figure 11 shows the RMS error is represented as a fun-

ction of the number of epochs for the final structure, 2-6-3-1.

As can be seen, the training of the model was successfully

accomplished. The error on training data generally decrea-

ses with increasing number of epochs, with an initial large

drop in error which slows down as the network begins to learn

the patterns representing the data set (Fig. 11). However, if

training is allowed to continue beyond the point at which the

error reaches the global minima, over-fitting (or over-

training) may arise, where memorization of the training data

occurs. Because of this over-fitting, if a network perfor-

mance is monitored by training data alone, the network will

perform with little error on the training data but will not be

able to generalize well for testing data. In several neural

network applications, this has been handled by monitoring

test set performance during training and picking the network

where performance on the test set was optimal (Uno et al.,

2005). In this study, the optimal network prediction was

found at epochs near to 24x10
3
. This result implies that the

designed ANN was able to properly learn the relationship

between the input and output parameters.

To reveal the credibility of prediction from the optimal

ANN model presented in Table 5, predicted versus actual

values of moisture ratio were plotted in Fig. 12. The results

demonstrate very good agreement between the predicted

and the desired values of moisture ratio, R
2
=0.998. For the

final network, the RMSE and MRE between predicted and

measured data were lower than 0.0192 and 2.63%, respecti-

vely. Ideally, the RMSE and MRE values should be close to

zero, indicating that, on average, there is no difference bet-

ween predicted and measured values. These results demon-

strate that the ANN model used in this study can potentially

be used to estimate drying kinetics of sesame seeds.

The results obtained from this study also showed that

the learning rate and momentum values affected the ANN

performance significantly. As clear from Table 5, a small

learning rate and large momentum were desirable so that the

achieved result was as precise as possible. A problem during

the training of an ANN is the choice of a suitable learning

rate and momentum (Chegini et al., 2007). In the learning of
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Optimum Transfer

function

Mean value Number of

Epochs
MLP

structure

learning

rate

momentum training

RMSE

testing

RMSE

testing

mean relative

error

R2

2-6-3-1 0.5 0.7 Tanh 0.0165 0.0192 2.63% 0.998 24000

T a b l e 5. The optimum values of the ANN parameters used to predict moisture ratio of sesame seeds

Fig. 10. Learning ability of ANN as a function of number of hidden

layers and number of neurons within each hidden layer (with

hyperbolic tangent transfer function).

Fig. 11. Convergence of the RMSE during training of the final

selected ANN.



an ANN, proper selection of learning rate and momentum

are very important to obtain satisfactory ANN training

(Anderson, 1995). An improper selection will result in more

time for the training process, poor ANN performance, and

sometimes unsatisfactory performance. Figure 13 shows the

effects of the learning rate and momentum values on the

learning capacity of the final selected ANN structure. It is

evident that the values of 0.5 for learning rate and 0.7 for

momentum were desirable so that the achieved training

result was as precise as possible.

Here it is possible to compare the prediction ability of

ANN models developed in this study, with that for

mathematical drying models reported in Table 1. The results

indicate that the use of ANN model resulted in higher R
2

and

lower RMSE and MRE values in predicting the moisture

ratio of SS. A simple ANN model instead of 2 logarithmic

models (two models for FC and NC drying methods) is more

powerful for accurate prediction of drying kinetics of

agricultural products. This provides the gradual possibility

of establishment of a unique powerful model which can be of

paramount importance in automatic control system. Further,

prediction by a well-trained ANN is normally faster than by

mathematical models.

CONCLUSIONS

1. The time needed to dry sesame seeds with initial

moisture content of 50.8% d.b, in drying by NC and FC

methods, was 400 and 900 min, respectively. The drying

rates of sesame seeds at the very beginning times of drying

were equal to 22.47 and 6.9 (g H2O kg
-1

dry matter min
-1

)

for FC and NC drying methods, respectively. The calculated

values of effective diffusion coefficient, De, of sesame seeds

for FC and NC drying methods were 3.1×10
-11

and

1.1×10
-11

m
2

s
-1

, respectively.

2. Among the considered semi-theoretical drying

models, the Khazaei model was found to be more suitable

for predicting moisture content of sesame seeds. The loga-

rithmic and Peleg models also had acceptable accuracy in

predicting the moisture ratio and moisture content of SS,

respectively.

3. The mean values of Trel parameter of the Khazaei

model determined for FC and NC drying methods were

26.18 and 84.746 min, respectively. Corresponding values

for the scale parameter � of the Weibull model were 56.43

and 148.68 min, respectively.

4. A feed-forward ANN trained by back-propagation

algorithm was able to learn the correlation between moisture

ratio of sesame seeds with drying method and drying time.

The optimal ANN model was found to be a network with 6

neurons in the first hidden layer and 3 neurons in the second

one with hyperbolic tangent transfer function. This optimal

model was capable of predicting the moisture ratio with R
2

higher than 0.998, RMSE of less than 0.02 and MRE about

2.63%. It was concluded that the neural network represented

drying characteristics of sesame seeds better than the

mathematical models.
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