
A b s t r a c t. The large number of intersecting surfaces in

a volume divides the latter into small sub-volumes. Each of the

sub-volumes is outlined or nearly outlined by parts of the

intersecting surfaces. A number of simple geometrical conditions

to be imposed on the intersecting surfaces determine a certain size

distribution of the outlined sub-volumes. The approach based on

these prerequisites was previously successfully applied to the

multiple cracking and fragmentation of rocks, naturally and by

blasting, as well as to soil fragmentation by shrinkage cracks. In

both cases the intersecting surfaces are cracks, and sub-volumes

are rock or soil fragments. The first application of the approach to

the pore structure of soils was related to modelling the clay matrix

pores and their size distribution. In this case the plate-like clay

particles play the part of the intersecting surfaces, and the pore

volumes play the part of the sub-volumes. The approach leads to

the scale-invariant fragment- and pore-size distributions and

permits one to take into account the superposition of the

intersecting surfaces of a different physical nature and scale, the

connectedness and tortuosity of the intersecting surfaces, the shape

characteristics of sub-volumes, and the swelling-shrinkage of

a system of clay particles. In general, soils contain, besides clay

matrix pores, such sub-volumes as silt-sand grains and different

types of clay aggregates and pores. The boundaries of the silt-sand

grains and aggregates, along with cracks and clay particles, play the

part of the intersecting surfaces. The objective of this work is to

generalize the approach to model the different size distributions in

sand and aggregated soil (in the last case we only consider the

interaggregate, ie structural porosity). This development follows

a brief summary of the approach including its previous applications

as well as a consideration of the differences between such inter-

secting surfaces as cracks, plate-like clay particles, boundaries of

sand grains and aggregates. A comparison between the model

predicted size distributions and relevant available data shows

satisfactory agreement.

K e y w o r d s: surface- and volume-like objects, pores, grains,

aggregates

INTRODUCTION

Soil structure plays a key part in modelling different

properties of the soil including those which are mechanical,

hydraulic, and shrink-swell. Quantitatively, the soil

structure is characterized by size and shape distributions of

different pore types, size and shape distributions of different

solids forming the soil, as well as connectedness and

tortuosity of pore walls and channels. Geometrically, soils

consist of volume-like objects (V-objects – blocks,

fragments, aggregates, silt and sand grains, and 3D pores)

and surface-like objects (S-objects – boundaries of

V-objects as well as cracks, slits and clay particles). In the

following this aspect will be discussed in more detail.

There are a number of approaches to modelling

pore-size distributions (as a part of functions describing soil

structure). The statistical approach has been used to

represent the distribution of the pore and aggregate sizes.

For instance, Gardner (1956) and, more recently, Kosugi

(1994, 1996) considered a lognormal distribution as a con-

venient mathematical representation to be justified

empirically. In the frame of this approach there are also other

probability laws (Brutsaert, 1966; Rice, 1995). Arya and

Paris (1981) constructed the pore size distribution based on

already known grain size distribution. The approach inclu-

des a number of assumptions relative to pore characteristics

such as the length of a pore and pore opening. Rieu and

Sposito (1991a, b) proposed a fractal model of soil porosity

of aggregated soils including pores and aggregates of only

one type. Nimmo (1997) introduced a division of pore space

into ‘texture’ and ‘structure’ ranges. For testing the model

predicted pore size distributions one usually uses data of the

soil water retention curve (Perrier et al., 1996) or the data of
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porosimetry (Newman and Thomasson, 1979; Fies and

Bruand, 1990). Interpretation of such data includes an

assumption about effectively cylindrical pores and their

filling in up to a certain radius.

It is worth noting that the above approaches only deal

with pore and aggregate size distributions, ie they come to

a non-total set of expressions from the viewpoint of the

quantitative aspect of soil structure eg pore shape

distributions are not considered. This remark, the above

mentioned understanding of soil structure, and analysis of

indicated approaches enable one to formulate the following

conditions, the observance of which is desirable at the

derivation and validation of expressions quantitatively

describing the soil structure.

1. S- and V-objects as a basis. It is preferable to

construct different size distributions of a soil structure based

on physical considerations, but not simply as convenient

empirically justified mathematical representations. Below

we refer to such a distribution as the physical one. One of the

major (and obvious) physical factors which should be taken

into account is the co-existence in a soil of the networks of

S-objects and corresponding systems of V-objects (of

different scale and nature).

2. V-objects of a different type on equal rights. Pore size

distributions should be constructed not based on already

known grain (or aggregate) size distribution but jointly with

the latter. That is, a model should describe the size

distributions of V-objects of different types on equal rights

and for the type number equal to or more than two, eg sand

grains, clay aggregates, and pores.

3. The modes of V-objects of a given type. V-objects of

a given type, eg pores, can include a number of modes with

different maximum dimensions. One can consider the

‘texture’ and ‘structure’ ranges of a pore space (Nimmo,

1997) as a particular case of such modes

4. Distribution validation of solids is simultaneously

that of corresponding pores. For validation of a model

predicted pore size distribution along with water retention

and porosimetry data one can use the validation of the

corresponding model predicted aggregate and grain size

distributions based on the data of the distributions. Such

validation is also direct because theoretically these

distributions are obtained jointly (see condition 2).

In light of these conditions one can assume that the

geometrical aspect of a soil structure connected with S- and

V-objects (see above) should play a key part. An approach

for modelling different fragment and pore size distributions

in soils and rocks was initially applied to cracks and clay

particles as S-objects and to blocks and clay matrix pores as

V-objects (Chertkov, 1986; 1991; 1995; 2000; 2003;

Chertkov and Ravina, 1998; 1999). For the reader’s

convenience, a brief summary of the intersecting-surfaces

approach (ISA) is given below (based on indicated works).

The gist of the approach is as follows. The large number of

intersecting surfaces (S-objects) in a volume divides the

latter into small sub-volumes (V-objects). Every one of the

sub-volumes is outlined or nearly outlined by parts of the

intersecting surfaces. A certain size distribution of the

outlined V-objects originates from a number of simple

geometrical conditions imposed on the S-objects.

The objective of this work is to generalize the

intersecting-surfaces approach and, using the generalized

ISA, to model the different size distributions in a sand and

aggregated soil. The generalization should account for the

simultaneous presence in a soil volume of a number of types

of S- and V-objects and a number of modes of S- and

V-objects of a similar type. Except for this novelty, the

applications of the generalized ISA for sand and aggregated

soil are new since they are based on considering the

S-objects of another nature than cracks and clay particles

(see ‘Peculiarities of different S- and V-objects in soils’).

Note that the aggregated soil is considered here at a given

water content, ie shrinkage-swelling is beyond the scope of

this work.

The development of the applications for a sand and

aggregated soil follows a summary of major concepts and

relations of ISA as well as brief consideration of differences

between such S-objects as cracks, plate-like clay particles,

boundaries of sand grains and aggregates. This

consideration aims to preliminarily show the place of ISA

applications to be developed in this work relative to existing

ISA applications. After the development of the new

applications, the model predicted size distributions of pores,

sand grains, and aggregates are compared to relevant

available data.

MAJOR CONCEPTS AND RELATIONS OF ISA

(Brief summary from Chertkov (1986, 1991, 1995, 2000, 2003),

Chertkov and Ravina (1998, 1999))

The concept of S- and V-objects

To define the three sizes of a V-object we consider the

two sizes of its largest face and the size normal to the latter,

and we designate them in order of decreasing values as

x�y�z. By definition the size distribution of V-objects is

the distribution with respect to their maximum size, x.

S-objects have limited sizes and random orientations in

space. The ratio of connected S-objects to the total number

of S-objects defines the so-called ‘connectedness’ of their

system, 0<C�1. S-objects do not stick together at their

surfaces. Connections of S-objects of close sizes, ~x, lead to

the development of an S-object of a larger scale ~(K*+1)x,

according to the concentration criterion at K*� 5 (Zhurkov

et al., 1981). The condition of the effective independency

of S-objects: the spacing x between neighboring inter-

sections of the S-objects with a straight line is distributed

as exp (-x/d) where: d is an average value (Hudson and

Priest, 1979 – data for rocks; Scott et al., 1986 – data for soils).
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The condition of V-object formation at S-object connection:

at least part of the S-objects outline V-objects totally or

nearly totally. The V-objects have sizes in a range, 0<x�xm

and constitute a volume fraction fm�1 of the soil (rock)

volume.

The size distribution of V-objects

If the S-objects fulfill the above geometrical conditions,

the physical size distribution of V-objects (see Introduction,

condition 1) is assumed to originate from the division of

a volume by a large number of intersecting S-objects. Then,

the size distribution of V-objects, F x xm( / ) (a volume

fraction of V-objects of size <x of their total volume) is given

as:

F x x f x x fm m m( / ) ( / ) /� , 0� �x xm (1)

f x x I x xm m( / ) exp ( ( / )),� � �1 0� �x xm (2)

I x x C K x x x xm m m( / ) ln ( * ) ( / ) exp ( / ),� � �1 4 44
(3)

x dm � 4 , (4)

and

f f Cm � � � �( ) exp ( . )1 1 84 (5)

(the coefficient 8.4 originates from Eqs (2) and (3) at x xm�
and K*=5). I x xm( / ) is the average S-object number of x

size in ~x
3

volume, f x xm( / ) is the volume fraction of

V-objects of size <x of the soil (rock) volume, and fm is the

volume fraction of V-objects of the soil (rock) volume. If

C=1, the entire soil (rock) volume is divided by S-objects

into V-objects (the case of fm = 1). If C<1, the soil volume is

not completely divided by S-objects (fm<1). There are also

similar expressions for the 2D case.

The maximum size of V-objects, xm and connectedness,

C of S-objects, eg of a crack network, are two independent

parameters of the distribution. These parameters can depend

on variables specific for a particular system of S-objects and

on spatial coordinates.

The features of the intersecting-surfaces approach

The characteristic dimension xm simultaneously plays

the part of the scaling factor as the denominator of the x xm/

ratio (Eqs (1)-(3)). That is, for different scales the form of the

distribution (Eqs (1)-(5)) does not change. In this meaning

the distribution is scale-invariant.

Connected S-objects outline V-objects. Hence, the F

function and the shape of V-objects being known, one can

estimate the specific surface area, L3, of connected

S-objects (per unit volume of the soil). The specific length,

L2, of connected traces of the S-objects at a cross-section can

be similarly estimated for the 2D case.

3D tortuosity, T3 of intersecting (or connected) S-objects

along a given direction is defined as a ratio:

T L L3 3 2� / . (6)

The tortuosity is expressed in terms of the f x xm( / )function

and its 2D version. For the total S-object system (when

x xm� ) the connectedness and tortuosity of the system are

interconnected.

In connection with the soil heterogeneity and variability

of a different type, xm and C parameters become functions of

spatial coordinates and time (locality).

The approach enables one to consider an actual soil as

a superposition of S-objects of a different physical nature,

eg clay particles, and cracks, and a different scale, eg cracks

of essentially different sizes.

The probability P x y z x y z( , , )d d d that a V-object will

have three sizes in intervalsd d dx y z, , ,eventually flows out of

the same regularity ( ( / ))f x xm :

P x y z
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m
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( / )
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d

dz
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In the simplest case the restrictions imposed on the three

sizes of a V-object have the form:

z y x xm� � � . (8)

The P function being known, one can estimate any

shape characteristic of V-objects.

Thus, the approach leads to the scale-invariant fragment

and pore size distributions and permits one to take into

account the superposition of the S-objects of different

physical nature and scale, the connectedness and tortuosity

of the S-objects, the shape characteristics of V-objects, and

the swelling-shrinkage of a system of clay particles.

Additional remarks

The concept of S- and V-objects is only connected with

geometrical conditions. Therefore, systems of S-objects and

corresponding V-objects meeting these conditions can have

different dynamic properties, eg natural cracks and blocks in

rock (Fig. 1a), shrinkage cracks and soil fragments (Fig. 1b),

and plate-like clay particles and pores of clay matrix (Fig.

1c). The dynamic properties of a particular system of S- and

V-objects can influence values of xm and C parameters and

their dependences on variables that are specific for the

application, but not the form of the dimension distribution of

the V-objects given by Eqs (1)-(5).
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Part of the actual S-objects (cracks, slits, and clay

particles) has small, but finite (non-zero) thickness (or

aperture) and volume. Corresponding modifications can be

introduced to the dimension distribution of V-objects given

by Eqs (1)-(5) if the small thickness (aperture) is found by an

independent way.

Existing applications

The intersecting-surfaces approach (ISA) based on

these general geometrical prerequisites was applied to

multiple cracking and fragmentation of rocks (Chertkov,

1986, 1991), as well as to soil fragmentation by shrinkage

cracks (Chertkov, 1995; Chertkov and Ravina, 1998). In

both cases the intersecting surfaces (S-objects) are cracks,

and V-objects are rock or soil fragments. As an example, let

us consider the soil fragmentation by shrinkage cracks. The

data relate to clod size distribution in artificially dried thin

soil samples of Italian Fluvisol clay soil (Fig. 1b) from Guidi

et al. (1978). The soil samples were formed by stacking

aggregates of the 1-2 mm fraction of the original soil. The
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Fig. 1. Examples of real S-objects and corresponding V-objects of essentially different physical nature, scale, and dynamic properties, but

meeting the similar ISA geometrical conditions (see the Section: The concept of S- and V-objects). a) Metamorphic rock with crack

network (Verhoogen et al., 1970 (Figs 3-18)). b) Sample of Fluvisol after shrinkage (Guidi et al., 1978); the mean distance between

cracks is about 6.5 mm. c) Microstructure of Greek Na-smectite (Wilding and Tessier’s, 1988 (Fig. 16A)).



method of clod size distribution measurement (Guidi et al.,

1978) was based on electro-optical determinations. The

experimental data (histogram in Fig. 2) are shown together

with the theoretical size distribution (solid curve in Fig. 2)

corresponding to connectedness C=1 and the mean clod size

d=6.62 mm (Eqs (1)-(5)). Agreement between the theore-

tical curve and the data is quite satisfactory.

The first application of the approach to soil structure

related to modelling the clay matrix pores and their size

distribution (Chertkov, 2000; 2003). In this case plate-like

clay particles play the part of the intersecting surfaces

(S-objects), and the pore volumes play the part of V-objects.

The data relate to the pore size distribution (squares and

triangles in Fig. 3) in Macon kaolinite, Georgia (Diamond,
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Fig. 2. Histogram of area distribution of 2D clods in the Fluvisol samples (Guidi et al., 1978) and theoretical solid curve (Chertkov, 1995).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
u

m
u

la
ti

v
e

p
o

re
v

o
lu

m
e

0.01 0.1 1 10 100 1000

Pore diameter

1000

C
u

m
u

la
ti

v
e

p
o

re
v

o
lu

m
e

(c
m

3
g

-1
)

Fig. 3. The predicted pore-size distribution (Chertkov, 2000) and two data sets from Diamond (1970) for Macon, Georgia kaolinite.

(�m)



1970). Pore size distribution (after oven drying) was studied

by the mercury intrusion method. Model predicted

distribution (solid curve in Fig. 3) corresponding to the

connectedness of clay particles, C=1 and the maximum

diameter of pore tubes, ~0.72 	m (Eqs (1)-(5)) was found by

the least-square criterion. Agreement between the data and

model is also satisfactory.

PECULIARITIES OF DIFFERENT S- AND V-OBJECTS

IN SOILS

The above existing applications relate to systems of

S-objects of two types: cracks (of different origins) in soil

(rock) and clay particles. In general, soils, besides fragments

outlined by cracks and clay matrix pores outlined by

plate-like clay particles, contain such V-objects as silt-sand

grains, clay aggregates, and pores of different types. The

boundaries of the silt-sand grains, aggregates, and pores of

different types along with cracks and clay particles, play the

part of S-objects. Different S-objects (and corresponding

V-objects) in soils have a number of peculiarities that are

important from the viewpoint of ISA applications.

1. Cracks, unlike other S-objects, can appear and

enlarge. Other S-objects exist retaining their size. Accor-

dingly, soil (rock) fragments can divide into smaller frag-

ments (see Fig. 1a and b). (Size changes by swelling-

shrinkage are not considered here).

2. Cracks and clay particles, unlike other S-objects,

outline V-objects of a single type. Cracks outline soil (rock)

fragments (Fig. 1a and b). Clay particles outline clay matrix

pores (Fig. 1c). In other words, every crack (clay particle) is

between two fragments (clay matrix pores). For this reason,

soil (rock) fragments and clay matrix pores (unlike other

V-objects) can form the total V-object system, ie fragments

can occupy the total fragmented volume, and clay matrix

pores can occupy the total clay matrix volume (see section

‘Additional remarks’ for a reservation about the non-zero

thickness of clay particles).

3. Boundaries of soil aggregates outline two types of

V-objects: aggregates and interaggregate (or structural)

pores. The total system of the V-objects (the total volume)

includes both aggregates and structural pores (unlike the

case of soil fragments and clay matrix pores). Boundaries of

structural pores separate the pores of aggregates. The

surface area of the boundaries of structural pores is always

a part of the surface area of aggregate boundaries. Therefore,

the formal transition in the model to the limit P
0, where: P

is structural porosity is possible unlike to the limit P
1.

4. Boundaries of sand grains also outline two types of

V-objects: sand grains and pores of a sand skeleton. All that

was said in point 3 about the soil aggregate system is the

same for the sand grain system after changing “aggregates”

by ‘sand grains’ and ‘structural pores’ by ‘pores of sand

skeleton’.

5. From the viewpoint of texture, clay matrix and sand

skeleton are different structures. However, unlike soils of

more complex texture and structure, their pore systems are

the simplest because they include only one type of pores,

clay matrix pores and sand skeleton pores, respectively. This

feature also relates to the aggregated soil that contains only

structural pores (here aggregates are considered to be

‘structureless’, ie sand grains, clay particles and matric

pores inside aggregates are ignored). The essential dif-

ference from the ISA viewpoint between a clay matrix on the

one hand and sand and aggregated soil on the other, is as

follows. Solids of a clay matrix are plate-like clay particles,

ie S-objects. Solids of sand and aggregated soil are sand

grains and aggregates, respectively, ie V-objects.

THE ELEMENTARY SIZE DISTRIBUTION OF V-OBJECTS

The V-object size distribution to be expressed by Eqs

(1)-(3) and (5) can be written as:

F x x P
P

P
x xm

I o x xm

m( / , )
( )

,

( / )/ .

�
� �

� �
1 1

0

8 4

(9)

where: I o ( )� is the function from Eq. (3) at C=1:

I K Ko ( ) ln ( * ) ( ) exp ( ), ( * )� � �� � � �1 4 4 54 (10)

and P fm� is a volume fraction of V-objects. P is coupled

with connectedness C from Eq. (5):

P f Cm� � � �1 84exp ( . ) . (11)

In the presentation of Eq. (9) the V-object size distribution is

characterized by xm and P parameters instead of xm and C.

We will refer to the distribution of Eq. (9) as an elementary

ISA distribution of the V-objects of a given type. Figure 4

shows the numerical presentation of the elementary ISA

distribution at different P values.

It is worth reiterating (see Section: Additional remarks)

that the elementary ISA distribution of V-objects, ie objects

that fulfill the abovementioned geometrical conditions, is

a universal function of V-object size, x xm/ (Fig. 4). The

view of the function (Eqs (9) and (10)) does not depend on

V-object type, eg soil (rock) fragments or clay matrix pores

(Fig. 1), and their methods of preparation. Materials and

methods can only influence values of the P (or C) and xm

parameters.

GENERALIZATION: THE CASE OF SEVERAL TYPES

OF S-OBJECTS AND CORRESPONDING V-OBJECTS

Initially (see Brief summary of ISA) the elementary

distribution (Eqs (9) and (10)) was derived for the case

where there is only one system of S-objects (cracks or clay

particles) in a volume. Therefore, the volume can be totally

occupied by corresponding V-objects (soil blocks or clay
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matrix pores), ie the case is possible when the maximum

volume fraction of the V-objects, Pmax=1. However, a soil

can contain more than one type of S-objects (see

‘Peculiarities…’) and more than one type of V-objects (eg

pores, sand grains, aggregates). In this case, the volume

fraction of V-objects of every type (Pp – for pores; Ps – for

sand grains; Pa – for aggregates) should be less than unity.

Then, ISA model can be applied to volume parts that are

only divided by S-objects of a given type and are only

occupied by corresponding V-objects. As a result, we come

to the same elementary ISA distribution (Eqs (9) and (10))

for every type of V-objects with replacements P Pp
 ,

P Ps
 , P Pa
 , and x xm mp
 , x xm ms
 , and x xm ma

for pores, sand grains, and aggregates, respectively. With

that the following obvious condition should be fulfilled:

P P Pp s a� � � 1. (12)

GENERALIZATION: THE CASE OF SEVERAL MODES

OF S-OBJECTS AND CORRESPONDING V-OBJECTS

OF A SIMILAR TYPE

Note that the elementary distribution (Eqs (9) and (10))

relates to a certain pair of xm and P values. However,

V-objects of a given type (pores, or sand grains, or

aggregates) can be a component mixture with several

different pairs of xm and P values. Such components of the

mixture we will refer to as modes. The volume fraction of

the modes in such a mixture meet the obvious condition of:

P Pi
i

I

� �
�1

(13)

where: I is the mode number of the V-objects of a given type;

Pi is the volume fraction of the i-th mode (of the total soil

volume). In the case of pores P P P Pp i pi� �, , and I I p� .

In the case of sand grains P P P Ps i si� �, , and I I s� . In the

case of aggregates P P Pi Pa ai� �, and I I a� . The size

distribution of the mixture of V-objects of a given type

(pores, or sand grains, or aggregates) can be presented as the

sum of I terms of corresponding elementary ISA

distributions (Eqs (9) and (10)) multiplied by the weights

P Pi i
i

I

/
�

�
1

:

F x P Pi
I o x xmi

i

I

i
i

I

( ) [ ( ) ] /
( / )/ .� � �� �

� �
1 1

8 4

1 1

, 0� �x xmI

(14)

(in the case of I=1 we return to Eq. (9)). We accept that

0 1 2� � � �x x xm m mI... . The i-th term of Eq. (14) (in

square brackets) is equal to Pi in the range x x xmi mI� � . If

the F(x) function gives a pore size distribution, P Pi
i

I

�

� �
1

,

where P is the total porosity (cf. Eq. (13)), and Pi is the

volume fraction of pores of the i-th mode (of the soil

volume). If the F(x) function gives the solids-size

distribution (sand grains or aggregates), P Pi
i

I

�

� � �
1

1 ,

where: P again is the total porosity, and Pi is a volume

fraction of solids of i-th mode (of the soil volume).

One should emphasize that F(x) distribution (Eq. (14)),

as the elementary ISA distribution (Eqs (9) and (10)), is

a universal function of the ratios x xmi/ (i = 1,…, I) for

V-objects meeting the geometrical conditions of ISA.

Materials and methods can only influence values of the Pi

(i=1,…, I) and x xm mI1 ,... , parameters.

DATA TO BE USED

Materials and methods

There are many data on the size distributions of pores,

sand grains, and aggregates. To illustrate and test the

generalized ISA model as applied to pores, sand grains, and

aggregates as V-objects, we considered three examples of

available data sets relating to sand skeleton pores (Day and

Luthin, 1956), sand grains (Mualem, 1976), and aggregates

(Wittmuss and Mazurak, 1958). These data are presented as

points in Figs 5-7.

The cumulative pore size distribution of Oso Flaco fine

sand (the points in Fig. 5) was calculated (Brutsaert, 1966)

based on the data for sand-water retention curve (Day and

Luthin, 1956) (one of two methods, noted in the

Introduction, for finding data on pore size distribution).
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The cumulative sand size distribution from Mualem’s

(1976) Fig. 2a (the points in Fig. 6) corresponds to the

averaged data of silty fine sand obtained by sieving.

Finally, the cumulative aggregate size distribution (the

points in Fig. 7) of Sharpsburg silty clay loam (a member of

the Brunizem great soil group, from the Agronomy Farm,

Lincoln, Nebraska) was determined by sieves, elutriation,

sedimentation, and centrifugation (Wittmuss and Mazurak,

1958).

Data analysis

The objective of the data analysis is to show that the

above indicated size distributions (the points in Fig.5-7) as

functions of size x, can be presented by the F(x) dependence

that is characteristic for an ISA distribution (Eq. (14))

despite the differences in the V-object nature, scale,

dynamic properties, and preparation methods.

In all three cases (sand skeleton pores, sand grains, and

aggregates) we considered the simplest case of two modes,

ie we approximated the experimental size distributions (10,

20, and 11 points in Figs 5-7, respectively) by the weighted

mixtures of two modes. That is, F(x) from Eq. (14)

transforms (at I=2 and x xm m1 2� ) to:

F x F x x x x P Pm m( ) ( / , / , , )� 1 2 1 2 0 2� �x xm . (15)

The model was checked by the least squares criterion

providing the minimum of the sum of squares, S of the

differences between calculated ( ( / , / , , )F x x x x P Pk m k m1 2 1 2

and measured (Fk, see Figs 5-7) values of the size

distribution across a range of k=1, ..., J values of x (J =10, 20,

and 11 in Figs 5-7, respectively):


 �S F x x x x P P Fk m k m k
k

J

� ��
�

( / , / , , )1 2 1 2
2

1

. (16)

Analysis of the experimental size distributions (both of

pores and solids) using the presentation of Eq. (14) at I=2

permits one to estimate P1 and P2 (and the total porosity
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Fig. 5. Data (10 points) of the pore-size distribution of Oso Flaco

fine sand from Day and Luthin (1956) (quoted by Brutsaert (1966))

and the fitted distribution curve (solid line) for two elementary pore

modes (Eq. (14) at I=2): xm1=0.084 mm, P1=0.375 and xm2=0.105

mm, P2=0.03 (at actual porosity value P=P1+P2=0.405 from Day

and Luthin (1956)). Goodness of fit is r2=0.96. Estimated standard

deviation of Fp (vertical bars) is � =0.08.

Fig. 6. Data (20 points) of the silty fine sand-size distribution from

Mualem’s (1976) Fig. 2a and the fitted distribution curve (solid

line) for two elementary sand grain modes (Eq. (14) at I=2):

xm1=0.25 mm, P1=0.37 and xm2=0.4 mm, P2=0.07 (at actual xm2=0.4

mm). Predicted sand porosity is P=1-P1-P2=0.56. Goodness of fit

is r2=0.99. Estimated standard deviation of FS (vertical bars) is

�=0.04.

Fig. 7. Data (11 points) of the aggregate-size distribution of

Sharpsburg silty clay loam from Wittmuss and Mazurak (1958)

(quoted by Rieu and Sposito (1991b)) and the fitted distribution

curve (solid line) for two elementary aggregate modes (Eq. (14) at

I=2): xm1=1 mm, P1=0.28 and xm2=9.25 mm, P2=0.2 (at actual

xm2=9.25). Predicted interaggregate porosity is P=1-P1-P2=0.52.

Goodness of fit is r2=0.99. Estimated standard deviation of Fa

(vertical bars) is �=0.05.



P P P� �1 2 or P P P� � �1 1 2 ) as well as xm1 and xm 2 . If P

and/or xm 2 are known in advance (the usual situation), this

simplifies the analysis, especially in the cases of I=1 or I=2.

If the standard deviations, � k for a number of Fk values are

similar and may be considered as a constant, � the method of

the least squares allows one to obtain an independent

estimate of � (Hamilton, 1964) (in addition to the estimates

of x x Pm m1 2 1, , , and P2) as:

� � �( / ( ))min
/S J 3 1 2 (17)

where Smin is the minimum of S as a function of three

independent parameters of x x Pm m1 2 1, , , and P2.

RESULTS AND DISCUSSION

Figures 5-7 show fitted size distributions and estimated

� values (vertical bars). Found values of x x Pm m1 2 1, , , P2

and P as well as goodness of fit, r
2

are also indicated in the

captions of Figs 5-7. All three examples presented in Figs

5-7 are characterized by high r
2

values. For all three

examples, the maximum discrepancies between the

experimental points and fitted curve are within the limits of

a little more than one standard deviation (�). These results

demonstrate the good agreement between the generalized

ISA model and available data despite the differences in the

V-object nature (sand pores, sand grains, and aggregates),

scale (hundredths of mm in Fig. 5; tenths of mm in Fig. 6;

and millimeters in Fig. 7), dynamic properties, and

preparation methods.

It is worth emphasizing that the elementary ISA

distribution (Eqs (9) and (10)), as well as the generalized

distribution (Eq. (14)), is not an empirical one like

lognormal or similar distributions. The ISA distributions

flow out of the statistics of intersecting surfaces (see Brief

summary of ISA). For simplicity we used fitting parameters

in the above testing (with the x x Pm m1 2 1, , , and P2

parameters). In general, however, P and xm parameters (Eqs

(9) and (10)), and in the generalized case P1, ..., PI and

x xm mI1 , parameters (Eq. (14)), have a clear physical

meaning and can be measured independently of the data on

size distribution (unlike parameters of lognormal and

similar empirical distributions). Independent measurement

of the P1, ..., PI and x xm mI1 , parameters (unlike fitted

parameters of empirical distributions) enables one to

estimate the size distribution for these parameter values

without expensive testing.

According to the ISA approach (see Brief summary),

the presentation of Eq. (14) is an analytical basis for the

quantitative description of the shape distribution of pores or

solids (Eqs (7) and (8)) and the tortuosity of pore channels as

a function of P1, ..., PI and x xm mI1 , (Eq. (6)). In turn, (pore)

size distribution (Eq. (14)), (pore) shape distribution, and

tortuosity are necessary for physically based modelling of

the soil water retention curve and hydraulic conductivity

function (as an example of such development as applied to

the water retention of a clay matrix see (Chertkov, 2004)).

CONCLUSIONS

1. An available approach, connecting the networks of

such surface-like objects (S-objects) as cracks and clay

particles in soils to the size distribution of corresponding

volume-like objects (V-objects) such as blocks and clay

matrix pores (the intersecting surfaces approach - ISA), is

generalized to the case of different pores, sand grains, and

aggregates as V-objects and their boundaries (along with

cracks and clay particles) as S-objects. The generalization is

based on accounting for the simultaneous presence in a volu-

me of a number of types of S- and V-objects and a number of

modes of S- and V-objects of a similar type.

2. For model illustrating and testing we used three

examples of available data on the size distributions of sand

skeleton pores, sand grains, and aggregates. The model was

checked by the least squares fitting of the theoretical

distribution curve to the experimental data (in general, the

distribution parameters can be found independently).

Comparison between the model and available data (based on

high values of the goodness of fit and small values of the

standard deviations) speaks in favour of the generalized

approach.

3. According to the intersecting surfaces approach, the

size distributions obtained permit one to construct the shape

distributions of pores, sand grains, and aggregates, and

calculate the tortuosity of pore channels. All these functions

(the size and shape distributions, and tortuosity) are

necessary for physically based modelling of soil hydraulic

properties.
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