
A b s t r a c t. The use of simplex algorithm for determination of

soil aggregation extreme changes has been presented. It enables to

find the range of changes of the soil aggregates stability index for

one-directional aggregation changes and assigned criterion of the

soil aggregation stability evaluation. The basic data for calculation

of the ranges of changes are distributions of soil aggregate fre-

quencies before and after the occurrence of the destruction factor.

The problems of existence of feasible solutions and their unique-

ness have been also discussed. It has been found that simplex algo-

rithm is suitable for calculation of extreme values of aggregates

stability index (ASI).
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index

INTRODUCTION

Soil aggregates are classified according to their size.

However, it is not only the temporary state of aggregation

that decides about soil quality but also its variability. There-

fore, the dynamics of changes of aggregation or the stability

of aggregation is analyzed. From this point of view, soil ag-

gregates can be characterized, either as being resistant or

vulnerable (sensible) to the action of external factors. The

pairs of these qualifications are dual to each other [1, 7].

The change in soil aggregates size is an inevitable con-

sequence of natural processes and a specific tendency of soil

aggregates change, i.e., decomposition or sticking together

can be evaluated positively or negatively. External factors

can affect soil aggregates randomly – independently from

human intentions, or purposely – in agreement with our ex-

pectations. In both cases, they can be short time actions

(accidental events, agrotechnical treatments) or long time

actions including the processes lasting several years [4, 11].

Niewczas and Witkowska-Walczak [10] proposed the

soil aggregates stability index (ASI) for evaluation of ag-

gregation changes in a tested soil sample. It has been defined

as a value of a function, which arguments are all the frequen-

cies of the transition table. The coefficients of this function

are respectively chosen weights assigned to each element of

the transition table. The index, determined this way, is a me-

asure of changes of aggregation within the whole soil sam-

ple which took place during the input� output cycle and it

emphasizes the importance of these changes through the

given weights. In paper [10], the linear function was used

and the weights were numbers with 2 as bases and integer

exponents, which were adequated to the number of aggrega-

te classes, of which the decrease of a given aggregate fra-

ction occurred as a result of the action of a destructive factor.

The definition of ASI enables to calculate its value for each

aggregate class separately and the sum of these individual

values is a value of the index of the whole soil sample. The-

refore, the additivity of the measure of stability, determined

this way, is preserved.

To find the extreme values of ASI the optimization me-

thods can be used and especially the operations research

[8, 9]. This group of methods contains, between others, the

linear programming. It is a method usually used for optimi-

zation of economical enterprises, however its mathematical

foundations open the way to broad spectrum of possible

applications.

The aim of this paper was to use the simplex algorithm

for determination of soil aggregation extreme changes.

The method presented in this paper enables to obtain

from available data some additional information about ag-

gregation changes, which cannot be possessed with help of

other known methods. None similar approach to the pro-

blem of the analysis of changes of the soil aggregate stability

has been found in the specialistic literature.
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THEORETICAL BASIS

Transition table

A detail analysis of aggregate changes can be done by

writing the results of the performed experiment on the ag-

gregates of a tested soil sample in form of a so-called tran-

sition table from an input distribution (before the action of a

destruction factor) to the output distribution (after the action

of a destruction factor). The transition table is a form of the

transition matrix, modified by the requirements of this study

[5, 8]. It contains much more information about the changes

of soil aggregates than the pair of their distributions at the

input and the output. It shows how the particular classes of

aggregates changed at input as the result of the investigated

factor and what frequencies are included in the aggregate

classes at the output.

The output soil material can be divided into classes and

its changes at output can be investigated independently for

each class. However, the analysis of the aggregates coming

from successive classes at the input, does not give the insight

into the distribution of the changes of a material quality in a

given soil, unless it combines these classes through the

knowledge of the frequencies of the aggregates appearance

in a random sample, representing a given soil [6]. In nume-

rous cases it does not matter how the aggregates convert

from the input distribution to the output distribution and

sometimes we are only interested in their output distribu-

tion, i.e., the result of the action of a specific event, treatment

or process. These are however, very simplified, utilitarian

approaches. The knowledge of the behavior of all the aggre-

gate classes (jointly), is very useful due to their hetero-

geneity. The aggregates coming from different classes very

often characterize with dissimilar inner structure and chemi-

cal composition, and hence they do not react alike to the

action of a destructive factor.

The necessary data for the stability analysis of the tested

soil sample are the following relative frequencies:

pi. = [p1., p2., ..., pk.] – input distribution (before destruction

factor occurrence) of aggregate frequencies,

p.j = [p.1, p.2, ..., p.k] – output distribution (after destruction

factor occurrence) of aggregate frequencies,

[pij] (i = 1, 2, ..., k; j = i, i+1, ..., k) – two-dimensional distri-

bution of aggregate frequencies; the numbers pij show which

weight portion of all mass of aggregates of the soil sample

under the destruction factor remained in the same class (j=i)

or which weight portion of those mass decomposed (j>i),

turning from class i to one of the following classes, j. These

data are obtained during the performed experiment.

Diagonal distribution, set of weights and soil

aggregates stability index

In paper [10], the concept of a diagonal distribution

diag= [ ]d ,d ,... ,d0 1 k 1� as introduced. Its consecutive fre-

quencies d ,d ,... ,d0 1 k 1� are obtained by summing up the

elements of the main diagonal of the transition table (their

sum is denoted as d0) and the elements of succeeding diago-

nals, which have the same distance from the main diagonal

and gradually become more far away from it, thus the last

frequency, d pk 1 1k� � . According to the requirements of a

frequency distribution, d d ... d0 1 k 1� � � � = 1. The form of a

diagonal distribution gives information about the scale of

changes of the aggregates of a studied soil sample as a result

of an action of a destructive factor. The frequency d0, deter-

minates, to the largest extent, the evaluation of the stability

of a soil sample which has been under an action of a destru-

ctive factor, whereas each succeeding frequency has smaller

and smaller impact on it. Similarly, the magnitude of a num-

ber in a positional notation is determined by its consecutive

digits, starting from a left, most significant digit and ending

at a right, the least significant digit.

To differentiate the importance of particular frequen-

cies of a distribution diag, they were assigned to an appro-

priately selected set of weights w [w ,w ,... ,w ]0 1 k 1� � .

Using the above mentioned analogy of numbers notation in

positional system, as a measure of stability of the aggregates

composing the tested soil sample, an index ASI has been

proposed, being a sum of products of the frequencies of the

diagonal distribution and weights:

ASI d w d w ...d w0 0 1 1 k 1 k 1� � � � � . (1)

A system of binary weights was admitted: w 20
k 1

�
� ,

w = 2 ,... ,w 21
k 2

k 1
0�

� � . For k = 6 these weights take va-

lues: 32, 16, 8, 4, 2, 1. Thus, the scale of ASI values is a range

from 1 to 32.

Input and output frequencies distribution

and a transition table

A transition of a sample elements of a material from the

input frequency distribution to the output frequency distri-

bution can be realized in different ways, through different

‘transition channels’ from one state (class) to another. The

same pair of frequency distributions in the input and in the

output can correspond to different transition tables. In Table

1, an appropriate example has been presented for four clas-

ses of aggregates (fictitious data). Furthermore, it shows

how different sums of frequency on a main diagonal (grey

background) can be obtained for the same pair of input and

output distributions. It leads to the conclusion that for given

input and output distributions it is not possible to determine

univocally their transition table except from specific cases

(e.g., for unidirectional changes, when input and output

distributions are identical or when one the distributions is

reduced to one class). There can be many such tables. One of

them is a table for a sample of a tested material, Ttest. The

ambiguousness of the transition table can be used to find the

tables which are the least and the most favourable from the
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point of view of an assumed criterion of evaluation of

aggregate stability changes. Against the background of

these tables (assigned further as Tmin and Tmax, respecti-

vely), a table Ttest which represents the changes of the aggre-

gation of an analyzed soil sample, which occurred between

the input and the output can be evaluated. The data for fin-

ding the extreme transition tables are exclusively the frequ-

ency distributions in the input (pi.) and in the output (p.j).

Under unidirectional changes, from all the possible

transitions between two distributions, the frequencies p11

and pkk are always precisely determined – the first of them

through the input distribution and the second through the

output distribution. These are the transitions: kl1� kl1 and

klk � klk, where kl1 and klk stand for the symbols of the first

and the last class of aggregates. The frequency of the first of

them is p11 = p.1, and of the second is pkk = pk.

Criteria of extreme changes of the soil sample

aggregation

The criteria of extreme changes of the soil sample ag-

gregation depend on a specific problem, being considered,

and they imply the selection of a set of weights, which on the

other hand determine the extreme forms of transition tables.

They can be formulated, analyzing which changes of classi-

fied elements of a material sample are considered as extre-

mely inverse, as a result of an existing or expected factor.

It results from the definitions of the set of weights and

the index of soil aggregates stability (ASI), that from the soil

samples having the same pair of frequency distributions in

the input and in the output, the most stable is a sample with

the largest part of the aggregates which were not destroyed

and with the rest of them coming, after decomposition, to the

classes, possibly closest to the input ones. Similarly, the soil

sample can be determined, which is characterized with the

smallest stability. It is a soil sample with the smallest part of

the aggregates, which were not destroyed and with the rest of

them coming, after decomposition, to the classes, possibly

furthest away from the input ones.

LINEAR PROGRAMMING AND SIMPLEX ALGORITHM

The extreme transition tables and the extreme values of

the index of soil stability for the above assumed criteria of

the extreme changes of the soil sample aggregation can be

found with help of various methods, especially optimization

methods. In this paper, the simplex algorithm of the linear

programming was used for this purpose. The linear pro-

gramming and connected with it algorithms belong to the

group of operations research which most frequently are used

for optimization of economical enterprises in a microscale.

The simplex algorithm is the most universal algorithm of

this group. Its mathematical foundations enable to solve a

very broad range of optimization problems, which can be

reduced to the problems of linear programming. It finds the

extreme values of a linear objective function, which has

linear form of constraints [2, 3, 8].

The first stage to solve a stated problem is to formulate it

in a language of the linear programming, i.e., to construct a

respective mathematical model. A task of the linear pro-

gramming is to solve a problem consisting in finding a point

with coordinates (x1, x2, ..., xn), such that:
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A B C D �Input

0.50 0.30 0.15 0.05 �Output

0.10 – – –
A

0.10

0.25 0 – –
B

0.25

0.15 0.15 0 –
C

0.30

0 0.15 0.15 0.05
D

0.35

A B C D �Input

0.50 0.30 0.15 0.05 �Output

0.10 – – –
A

0.10

0.10 0.15 – –
B

0.25

0.10 0.15 0.05 –
C

0.30

0.20 0 0.10 0.05
D

0.35

A B C D �Input

0.50 0.30 0.15 0.05 �Output

0.10 – – –
A

0.10

0 0.25 – –
B

0.25

0.10 0.05 0.15 –
C

0.30

0.30 0 0 0.05
D

0.35

A, B, C, D – symbols of quality classes. Input, Output – frequency

distributions in the input and output, respectively.

T a b l e 1. Examples of three different transition tables, having the

same frequency distributions in the input and in the output with a

different sum of frequencies on mains diagonals (0.15, 0.35 and

0.55, respectively)



Z = c1x1 + c2x2 + ... + cnxn � max, (2)

it means that function Z reaches its highest value in this point

under the following functional constraints:

a11x1 + a12x2 + ... + a1n xn � b1,

a21x1 + a22x2 + ... + a2nxn � b2, (3)

..........................

am1x1 + am2x2 + ... + amn xn � bm

and the restrictions which assure non-negative coordinates

of the expected point: x1, x2, ..., xn � 0.
Function Z is called an objective function, variables xj

are the decision variables, whereas the quantities aij, bi, cj

(i = 1, 2, ..., m; j = 1, 2, ..., n) are the input data called the

parameters of the model.

The above given model is called a standard form. More-

over, other approved forms of a model of the linear pro-

gramming exist, consisting in minimization of the objec-

tive function, occurrence of a part of functional constraints

in a form of equality or inequality with signs ‘�’ or resi-

gnation from a part or all of restrictions concerning the signs

of coordinates xj.

This paper is limited to present only a draft of the

simplex algorithm due to its computational complexity. The

authors keep in mind that modern problems of linear pro-

gramming are solved with the help of developed computer

packages.

The first step in the simplex algorithm consists in

reducing the problem of linear programming to a canonical

form, i.e., containing all the restrictions in the form of

equations. To realize it, all the inequalities are changed into

equations by introducing some new variables. In case of

inequalities of the type ‘�’, so-called slack variables are

added to their left sides, which are an initial acceptable

solution, considered as a basic solution. In case of inequa-

lities of the type ‘�’, so-called surplus variables are subtra-

cted from the left sides, and so-called artificial variables are

added. In this case, the artificial variables are included into

the first basic solution. The slack and surplus variables get

into the objective function with their coefficients equal to

zero, and the artificial variables with so-called M coeffi-

cients, where M is a very big number (M� 	).

The slack and surplus variables can get into the final

solution, as opposed to the artificial variables. Therefore, in

the objective function, which is maximized, the artificial

variables occur with –M coefficients, decreasing this way

the value of this function. However, in the objective

function, which is minimized, the artificial variables occur

with +M coefficients, increasing this way the value of this

function.

The next step of the algorithm is to build the first basic

solution in the form of so-called simplex tableau. Then, it is

checked, if this solution is an optimal one. If not, a next

simplex tableau is constructed, i.e., a next basic solution –

better or at least not worse than the previous one. The pro-

cedure is finished after stating that an actual basic solution is

optimal, i.e., it cannot be improved. Thus, the simplex algo-

rithm is an iterative procedure.

The way of formulation of the presented problem in ter-

minology of the linear programming is illustrated by the fol-

lowing example, presented for simplicity for three classes of

aggregates. Let the distributions of frequencies in the input

and in the output, expressed by the relative frequencies, have

the following forms: pi. = [0.5, 0.3, 0.2], p.j = [0.1, 0.4, 0.5]

(fictitious data). For unidirectional changes, the unknown

extreme frequencies of the transition tables are: p , p ,11 12

p , p , p , p13 22 23 33 and let the numbers w w11 12100� �,

10,w 1,w w 10,w 10013 22 23 33� � � �100, be the corre-

sponding (given) weights. Thus, the coordinates of a sought

extreme point (x ,x ,... , x )1 2 6 correspond with the mention-

ed frequencies, the parametersc ,c ,... ,c1 2 6 correspond with

the assigned weights, and the parameters aij are the numbers

equal to 1 (when a sought frequency occurs in the succe-

eding restriction) or 0 (otherwise). The role of parameters

b1, b2, ..., b6 is played by the succeeding frequencies of the

distributions in the input and in the output. The objective

function Z = ASI is, therefore, a linear function of the varia-

bles p , p , p , p , p , p11 12 13 22 23 33 , with given weights as

coefficients:

ASI 100p 10p 1p 100p 10p 100p11 12 13 22 23 33� � � � � � .

(4)

The constraints of the objective function, resulting from the

frequency distributions in the input and in the output are as

follows:

p p p 0.5 p 0.1

p p 0.3 p p 0.4

p 0.

11 12 13 11

22 23 12 22

33

� � � �

� � � �

� 2 p p p 0.513 23 33� � �

(5)

The additional (assumptive) restriction for the sought

frequencies is a demand that they were not negative. This

restriction creates a lower limit for the objective function

values. It’s worth to pay attention to the fact, that the system

of Eqs (5) is an indefinite system, i.e., it does not have an

unique solution. To find the extremum of the objective

function (the maximum), one of the given Eqs (5), e.g., the

last one, should be replaced with an inequality of the type �.

It restricts the upper limit of the objective function values

and at the same time does not change the practical sense of

the considered problem of the linear programming. To solve

this problem any programme can be applied, that realises the

simplex algorithm.

In our case the statistical package STATGRAPHICS

5.0 was used, which includes such a programme. For the

objective function, which has n variables and m restrictions

(constraints), the data of the programme are:
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– the coefficients of the objective function (n numbers),

– the right sides of the constraints (m numbers),

– a matrix of coefficients of constraints (m lines x n co-

lumns),

– the codes of the constraints (m numbers), the codes are the

numbers: – 1 – for inequalities of the type �, 0 – for equa-

tions = and 1 – for inequations of the type �.

For the discussed example the data have the following

form:

– the coefficients of the objective function are the applied

weights: 100, 10, 1, 100, 10, 100;

– the right sides of the constraints are the frequency distri-

butions in the input and in the output: 0.5, 0.3, 0.2, 0.1,

0.4, 0.5;

– a matrix of the coefficients of constraints are the numbers

inside a double-line frame in Table 2. They are the coef-

ficients at the unknowns pij of the system of Eq. (5). When

the respective unknowns occur in a given equation these

coefficients are equal to 1, otherwise they are equal to 0;

– the codes of constraints are the numbers: 0, 0, 0, 0, 0, –1.

They indicate that the first five constraints have the form

of equations, whereas the last one is an inequality of the

type �.

As a result of the program action, the maximum of the

objective function as well as the sought values of the varia-

bles of the objective function for which the maximum occurs

are obtained. In reference to the considered example, Zmax =

ASImax is possibly the highest index of the aggregate

stability, which can be obtained under assigned weights for a

given pair of the frequency distributions in the input and in

the output. The coefficients of the maximum of the objective

function, found by the programme, are the frequencies of the

transition table Tmax for the considered example: p11, p12,

p13, p22, p23, p33. To find the minimum Zmin = ASImin of the

objective function and the elements of the table Tmin, it is

satisfactory to change the signs of the coefficients of the

objective function into the opposite ones and to activate the

programme. For the described example, the following va-

lues were obtained: ASImax = 61.3 and ASImin = 37.0. The

respective tables Tmax and Tmin have the form presented in

Table 3.

The existence of feasible solutions

If the solutions of a problem are sought, first, the issue of

its solvability and then the problem of the existence of any

feasible solutions should be decided. The considerations pe-

rformed till now, as well as the presented examples show,

that the problem of finding the extreme transition tables is

solvable. The second problem can be reduced to the exami-

nation, if for each of any pairs of distributions, a transition

table (even if it is just one table) can be constructed. It turns

out, that a positive answer exists only for bidirectional chan-

ges. Therefore, in case of unidirectional changes, not each

pair of distributions can be a distribution of the input and the

output. For instance, when k = 2, a pair of distributions [0.4,

0.6] and [0.5, 0.5] cannot, respectively, create the input and

the output distributions (under the assumption of destructive

direction of aggregates changes). The same pair of distribu-

tions for bidirectional changes makes it possible to build lots of

transition tables. However, just by changing the roles of these

distributions, one can become convinced that in this case for

unidirectional changes the only possible transition table is a

table with elements: p11 = 0.4, p12 = 0.1 and p22 = 0.5. It is
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p11 p12 p13 p22 p23 p33

1 1 1 0 0 0 p1.

0 0 0 1 1 0 p2.

0 0 0 0 0 1 p3.

1 0 0 0 0 0 p.1

0 1 0 1 0 0 p.2

0 0 1 0 1 1 p.3

p11, p12, p13, p22, p23, p33 – arguments of the objective function Z

(unknown frequencies of the transition table),

p1., p2., p3., p.1, p.2, p.3 – frequencies of the input and of the output

distributions, respectively.

T a b l e 2. A matrix of coefficients of constraints for an example

presenting the application of simplex algorithm

A B C �Input

0.5 0.3 0.2 �Output

0.1 – –
A

0.1

0.1 0.3 –
B

0.4

0.3 0 0.2
C

0.5

A B C �Input

0.5 0.3 0.2 �Output

0.1 – –
A

0.1

0.4 0 –
B

0.4

0 0.3 0.2
C

0.5

Explanations as in Table 1.

T a b l e 3. Extreme transition tables, referring to the example

showing the application of simplex algorithm



because, always for k = 2 in case of unidirectional changes,

only one transition table exists.

In fact, the problem of the existence of feasible solu-

tions is just an academic problem. Because, if the distribu-

tions in the input and in the output are the results of testing

the aggregates of a soil sample, at least one feasble transition

table exists – it is a table Ttest.

Uniqueness of extreme solutions

In case of unidirectional changes for a given pair of fre-

quency distributions in the input and in the output, under the

presented in this paper criterion of quality changes (thus

under the same objective function), if a pair of extreme tran-

sition tables and a pair of extreme indices of stability exist,

these are the only pairs. It is assured by a specific triangular

construction of transition tables and by a selected set of

weights. However, the same extreme transition tables can

be obtained for different sets of weights, i.e., for different

forms of the objective function.

If the results of the action of a destructive factor are uni-

directional changes, usually many transition tables can be

built for a specific pair of frequency distributions in the input

and in the output. The existence of at least one transition

table is guaranteed by a performed experiment and by a table

Ttest, which is assigned basing on it. Only one transition

table exists, when the input and the output distributions are

identical or when one of these distributions is reduced to one

class. It is obvious, that in this case the extreme indices of

stability ASImax, ASImin and ASItest possess the same value.

CONCLUSION

The simplex algorithm of the linear programming is an

effective tool to find the range of extreme indices of the soil

aggregates stability of a tested soil sample, both for unidirec-

tional and bidirectional models of the aggregate changes.
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