
A b s t r a c t. The paper describes multivariate analysis

of variance in the split plot design when the so-called

control treatment B
0

is allocated to an additional subplot.

The factor B
1

allocated to small plots is subject to the

two-stage classification, where the levels of the second

stage dependent on the levels of the first stage. This

dependence is treated as a hierarchical classification of two

factors: B
1
- the first stage levels and C (inside B

1
) - the

second stage levels. A linear model of the experiment

consisting of two forms is used, one form for the plots where

all the factors are present and the other for control plots. Be-

side that, for the sake of better visualisation of the expe-

riment, the component models are based on two different

vectors of the grand means. Tests of hypotheses for the

comparison with the control are presented. The discussed

theory is illustrated by an agrophysical experiment con-

ducted according to such a design.

K e y w o r d s: contrasts, control object, hierarchical

classification, multivariate analysis of variance, split plot

design

Classification AMS 1993: 62H12, 62H15.

INTRODUCTION

Split plot designs are widely used in field

experiments. The problem of the comparison of

group objects with control objects often occurs

in variety, fertilization and feeding experi-

ments. Recently, agrophysical experiments

based on split-plot design have been carried out.

These experiments need new elaboration of

statistical analysis with respect to the control

object and few-stage classification of one fac-

tor. The literature on the subject of block de-

signs for univariate analysis of variance is

extensive. The problem of one or more control

objects has been considered with respect to

development of experimental design [2,5,11,

13] and with respect to statistical analysis of

such designs [1,3,9]. Beside that, this problem

was considered in the light of the assumption of

the equivalence in alternative hypothesis for the

contrasts between test objects and the control

object [6]. Another important problem, is deter-

mination of sample sizes for the comparison of

k treatments against a control [7,8,12].

In this paper a multivariate analysis of

variance, for a new model of experiment with

two factors A and B
1

and with an additional

control object B
0

set up according to the split

plot design is considered [10]. An experiment,

in which the levels of the A factor (Aj , j=1,2,

...,a) were randomly allocated to a whole-plots.

Inside each level Aj of the factor A, bc levels of

the second B
1

factor and one control B
0

object

were allocated to bc +1 plots. The bc levels of

B
1

are obtained, as a result of a two stage

classification, in the following way: there are b

first stage levels Bk (k=1,2,...,b) of B
1

and c

second stage levels Cl(Bk) (l=1,2,...,c) inside

each level Bk of B
1
. These c levels will be

treated as the levels of the third factor C inside

B
1
. Together, the factor B

1
and the control

object B
0

are denoted as B. A hierarchical

classification was adopted because of the
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character of the Cl(Bk) levels of the C factor that

dependent on the Bk levels of the B
1

factor.

Additional fixed effects of C and appropriate

interaction effects were extended a classical

linear model for the split plot design. The effects

of blocks are treated as fixed effects. Random

errors are the same as in the classical model,

since the experiment was arranged according to

the scheme of the split plot design with two

factors. The goal of this paper is to present the

multivariate analysis of variance for a new form

of the model of such an experiment given by

Kuna-Broniowska and Przybysz [10]. The

matrices with appropriate sums of products for a

particular null hypotheses are based on the

quadratic forms obtained in univariate analysis

of variance [10]. The discussed theory is widely

illustrated by an example of an experiment

conducted according to such a design. The ex-

ample is based on the data of the agrophysical

experiment conducted in University of Agri-

culture in Lublin, where a factor was subjected

to two-stage classification with a relation bet-

ween the first and second levels.

MODEL

The observations for the h-th variable of

the experiment conducted in r blocks, can be

described according to one of the two linear

models:

y eij h h ih jh ijh h00 0 0� � � � �� � � �

� �� ���
j h ij he
0 00 (1)

for the control plots, where the B
1
and C factors

are not present,

y eijl k h h ih jh ijh kh( ) � � � � �� � � �1

+ � � � �	 �� �	l k h jkh jl k h ijl k he( ) ( ) ( )� � �

(2)

for the other plots.

The joined model of the complete experi-

ment takes the following form:
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(3)

where: h =1,..., p; i =1,...,r; j =1,...,a; k =0,...,b;

l =0,...,c; �1h and �0h are general means, �ih is

the effect of the i-th block,� jh is the effect of the

j-th level of A, �kh is the effect of the k-th level

of B
1
, 	 l k h( ) is the effect of the l-th level of the C

factor inside the k-th level of B
1
, � ���

jkh
and

� ��	
jl k h( )

are relevant interaction effects,

eijl and eijl k h( ) are experimental errors.

In the model (3) there are two groups of

general means, namely: �1h and �0h . This

point of view was adopted because of future

estimators and analyses.

Using the matrix notation and assuming a

traditional data arrangement, namely according

to the blocks, next the A, B factors and finally a

C model (3) can be written:

Y X X' N p M p R r p A� � � �
� � �� � �2 X a p

� �� � �
X XB b p C B bc p� 	( ) ( )1 1

� � �
X AB a b p�� ( )1

� �
� �

X I e
AC B abc p N N p( )

'1 2�	 (4)

where: N = ra (bc+1),Y’ is the (N xp) matrix of

observations,

X 1
1 0

M ra
bc bc� �

�

��
�

���
� �

1
1 1

0 1
is the design

matrix for general means occurring by

�
�

�
�
�

�
�

�

�
�

�

�

11

01

p

p
,

X I 1R r a bc� � � �( )1 1 is the design matrix for

the R blocks, � is the � �r p� matrix of fixed

effects of blocs,
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X 1 IA r a� ��1 � �1bc 1 is the design matrix for

the A factor,

� is the � �a p� matrix of fixed effects of A

factor,

X B ra
b c bc

b

� �
��

��
�

���
� �

�

1
I 1 0

01
1 1

1 1
is the design

matrix for the B factor,

� ( )b p� � �1 ��1 1p� ,... , �� �bp p� �1 0 1,
'
is the

� �� �b p� �1 matrix of fixed effects of the B

factor, X 1
I

0C B ra
bc

bc
( ) � �

�

��
�

���
�

1
1

is the design

matrix for the C(B
1
) factor, 	 is the (bc�p) matrix

of the fixed effects of the C factor,

X 1 I
I 1 0

0AB r a
b c bc

b

� � �
��

��
�

���
� �

�
1

1 1

1 1
is the

design matrix for the AB interaction,

��� �� �� �� ��� � � � �11 1 1 1 10 1 21 1p bp p p,... , , , ,

��� ��abp a p� �1 0 1,
'
is the � �� �� �a b p� �1 matrix

of the interaction effects between A and B
1
and

also control effects for B
0

inside A,

X 1 I
I

0AC B r a
bc

bc
( )1

1

� � �
�

��
�

���

is the design ma-

trix for the A�C(B
1
) interaction, �	 is the (abc�p)

matrix of the interaction effects of A�C(B
1
),

X I 11 1� � �ra bc and I N are the matrices

related to experimental errors e1 and e2 , respec-

tively,

� denotes Kronecker product of matrices,

In is the n�n identity matrix,

1n�1 is the n�1 vector of ones,

0n�1 is the n�1 vector of nulls.

The e1 1wp� and e2 1dp� columns of the ma-

trices of experimental errors e1p ra� and e2 p N� ,

respectively are mutually, independently distri-

buted as follows:

e1 1wp� ~ � �N w rap 0, , ,... , ;�1 1�

� �e 02 1 1dp pN� ~ , ,� d N�1 1,... , , � and �2

are symmetric positive definite matrices.

The division of the matrix of the � �, and

�� parameters in respect to the two forms of the

linear model (3) results in block-diagonal

sub-matrices occurring in the XM, XB, and in

XAB matrices.

MS ESTIMATORS

In the fixed split plot model, the normal

equations for the estimators of the model

parameters take the following form [17]:

X V X X V Y' ' ' ,� ��1 1�
�

� ��q p p� �    1 2, ,... ,

� �V I E I� � � � ��� �1 1 1ra bc N , (5)

where X is the design matrix, V
-1

denotes the

inverse of the matrix V covariance, � is the

matrix of the fixed parameters. The forms of the

parameter estimators in the classical, multi-

variate split plot design are known [14] and can

be easily adapted to the considered model.

Taking into account the additional control

treatment and the new, two-form model of such

a design, we solve the standard equations in

order to obtain the parameter estimators. In the

considered design we obtain:

X �

X X X X X X X
|

|

|

|

|

|

|

|

|

|

|

|

M R A B C B AB AC B( ) ( )
,1 1

�
�

�
�

 � � � � 	 � �
� � � � � � �

hq h h h h h h� �1 [ ' ' ' ' ' '
|

|

|

|

|

|

|

|

|

|

|

| �	
�

h ' ]!.

In order to obtain the unique solution of the

standard equations, we need to add restrictions

on the model parameters. Here, we take the

following restrictions for each variable Yh:

� � � �ih
i

jh
j

h kh
k

b

�" �" � �"
�

0 0 0 00
1

, , , ,

� �# 
 �" # 
 �"k kl k h
l

jkh
j

0 0 0 0	 ��( ) , ,

� � � �� �# � �"
�

j c
jkh j h

k

b

�� ��
0

1

0,
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� �# 
 �# �"k j
jl k h

l

0 0�	
( )

,

� �# �"
� �

l
jl k h

k j

�	
( )

,

.0
1 1

(6)

We assumed that the vector of the fixed

�0 1p� effect is equal to the null vector because

the factor B is not used in the control plots.

HIPOTHESES AND TESTS

We consider a multivariate general linear

hypothesis on the equality of some vectors of

parameters that correspond to the univariate

hypothesis:

K Md q q p d u d u� � � ��� 0

with the alternative

K Md q q p d u d u� � � �
� 0 , (7)

under the assumption that:

rank (K)$min [rank (X) ; d].

We are interested only in the comparisons

of the parameter matrix rows�, this assumption

corresponds to assuming the M matrix equal to

identity Ip matrix. So, the hypothesis focuses

the comparisons between the parameters for

each variable separately. According to the

model experiment, we will test the following

hypotheses:

- H0ZT
assuming that the two vectors of the

general means �1 and �0 do not differ effi-

ciently:

ZT � � �� �%1 0 ,

- H0A assuming that the vector of � effects of

the A factor is not efficient,

- H
B0 1 assuming that the non-zero B

1
levels of

the B factor do not influence the change of

values in the considered variables,

- H
0C(B1)

assuming that the 	 vector of the

C(B
1
) factor effects is not efficient,

- H B0A assuming that the ��vector of the inter-

action between A�B
1

effects, is not efficient,

- H0AC assuming that the �	 vector of the in-

teraction between A�C(B
1
) effects, is not

efficient,

- H Z
AB

0 1
assuming that the vectors of the effects

of the particular levels of the A factor do not

change efficiently after application of the

non-zero levels of the B
1

factor:

� � � �# � " �
�

j
bj jk

k

b

: .�� ��
0

1

1
0

The null linear hypothesis K� =0 concer-

ning particular sources of variation, can be for-

mulated in many ways, we propose assuming

the following matrices:

� � � �K K I
|

|

ZT
� � � �� � ��1 1 11 1 1; , ( ) ( )A a a a a ,

� �K I 1
|

|

B b b b b1 1 1 1( ) ( ) ,
� � ��

� �

� � � �K I 1
|

|

Cb c b c b c b c( ) ( ) ( ) ( ) ,� � � � �� � �1 1 1 1 1

� �K
AB a b a b1 1 1 1 1 1( )( ) ( )( )� � � � ��

� �� �� � � �I 1
|

|

( )( ) ( )( )a b a b1 1 1 1 ,

� �KAC a b c a b c( ) ( ) ( ) ( )� � � � ��1 1 1 1 1

� �� �� � � �I 1
|

|

( ) ( ) ( ) ( ) ,a b c a b c1 1 1 1

K I 1
|

|

Z a b
AB b1

1
1� �

��
��

�
��

' , (8)

which will be allocated in the K matrix of a

multivariate general hypothesis, in an the appro-

priate place with other K elements equal to zero.

For one Yh, variable the column space C(X)

of the design matrix X is called the estimation

space of the linear model. This estimation space

is a subspace of RN; its orthogonal complement

in RN is called the error space. We can subtract

the r(X) orthogonal subspaces from C(X) space,

where r(X) denotes the rank of X, so C(X) can

be written as a simple sum of the orthogonal

subspaces corresponding to the sets of esti-

mable orthogonal linear functions &  ' of the

model parameters. The estimate l’y of the esti-

mable function &  ' is the linear function of the

observations. There is one to one correspon-

dence between the estimable &  ' functions and
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their best l’y estimates (the expected value of

l’y is equal to &  ' and l’y has the minimum of

variance), linearly independent estimable fun-

ctions have linearly independent best estimates.

A set of linear Ly functions of the observations

carry k degrees of freedom, if we can find k li-

nearly independent functions in the set, and no

more, k = r(L). Given a set of linear functions of

the observations, the square of the y projection

on the row space R(L) of L will be called the

sum of squares due to the Ly set, and its degrees

of freedom will be the same as carried by the Ly

set. The sums of the squares (quadratic forms)

arising from the mutually orthogonal sets of

functions are called orthogonal sums of squares.

According to the division of the C(X) estima-

tion space, the sum of squares, arising from the

set of all the mutually orthogonal linear fun-

ctions, can be divided into r(X) orthogonal sums

of the squares. The P matrices occurring in the

orthogonal sums of y’Py squares are ortho-

gonal projection operators onto appropriate

subspaces, P = P’, PP’= I.

The univariate analysis of variance can be

simply extended to p-variate response variables

by replacing the vector of y observation in the

appropriate quadratic y’Py forms by the matrix

of Y observations [4,15]. In the univariate ana-

lysis of variance, the quadratic forms corre-

sponding to the particular null hypothesis for

the vectors of parameters in the considered

model are given in [10].

The projection operators occurring in these

quadratic forms are as follows:

P E
E 0

0
m� �

�

�
�

�

�
�

1

1

1

ra
ra

bc bc bc

bc'
,

P I E ER r r a bc
a bc r

�
�

�
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(
)

*

+
,� �
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1
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( )
,( )
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� �
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1'
,

P E I EAB r a a
r a

� � �
'

(
)

*

+
,�

1 1

I E 0

0
Eb c c bc
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bc
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��

�
�

�

�
��

�

'

(

)
)

*

+

,
,�

1

1
1

1

1'
,

P I E1

1

1

1
�

�
�

'

(
)

*

+
,�

bc r
r r

I E Ea a bc
a

�
'

(
)

*

+
,� �

1
1 , (9)

where: En is the n�n matrix of ones, En�m is the n

�m matrix of ones. In the multivariate analysis of

variance, the sums of products can be obtained

in the same way.

With respect to the control treatment and

two grand means the following additional

sub-spaces have been separated:

- C( )ZT
X for the ZT � �� �1 0h h contrasts,

- C( )1X
B

for the non-zero levels of the B

factor,

- C( )1X
AB

for the interaction between A and

non-zero B
1

levels of B,

- C( )ZX
AB

for the

ZAB j� �( )�� 0

1

1b
jk

k

b

( )��
�
" contrasts.

The corresponding projection operators

P
B 1 , PZT

, P
AB 1 and PZAB

, for the additional

sub- spaces, take the following forms:

P E
I E 0

0
B ra

bc bc bc bc

bcra1

1

0

1

� �
��

�
�

�

�
�

'
,

P E
E -1

-1
Z ra

bc bc bc

bc
T ra bc bc
� �

�

�

�
�

�

�
�

1 1

1

1

'
,

P E I EAB r a a
r a1

1 1
� � �

'

(
)

*

+
,�

I E 0

0

bc bc bc bc

bc

��

�
�

�

�
�

1

0'
,
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P E I EZ r a a
AB r a1

1 1
� � �

'

(
)

*

+
,�

1

1

1

bc bc
bc bc bc

bc�

�

�
�

�

�
�

E -1

-1'
.

(10)

It will be pointed out that the particular

quadratic forms in the univariate analysis of

variance have an independent non-central - 2

distribution [10]. The structure of the covarian-

ce matrix � does not influence this distribution.

The appropriate sums of the products for the

hypotheses given by matrices (8) can be calcu-

lated as the following products of matrices:

H YP Y H YP Y H YP YR R A A B B� � �' , ' , ' ,

H YP Y H YP YC C B B
� �' , ' ,1 1

H YP Y H YP YZ Z AB ABT T
� �' , ' ,

H YP Y H YP Y
AB AB Z

AB Z
AB

1 1
1 1

� �' , ' ,

H YP YAC AC� ' , (11)

and the sums of products for experimental

errors:

GE1=YP1Y’,

GE2=YY’-HR- HA- HB- HC - HAB- HAC- GE1.

The Ws function based on the maximum

eigenvalue & s of the matrix type HG
-1

will be

used as the test function, Ws
s

s

�
�

&

&1
[16].

When the null hypothesis is true, then the

parameters of the distribution of the variable Ws

are s, m, and n calculated according to the

formulas [15]:

s = min [r(K), r(M)],
� � � �

m�
� �r rK M 1

2
,

� �
n

N
�

� � �r pX 1

2
, � �N � �ra bc 1 . (12)

For s=1 random variable F
n

m

W

W
�

�

� �
�

1

11
n

m

�

�

1

1
& has F distribution with .1= 2m+2 and

. 2 = 2n+2 degrees of freedom. The null hypo-

thesis will be rejected on the level � of si-

gnificance if W Ws n/ �; ., ,s,m where W n�; .,s,m is

above a 100� -percent critical value from the

Pillais tables or from the Hecks monograms.

The hypothesis for the ZT contrasts

HZT 0 1 0 0: � �� � on the equality of the

means of the component models can be treated

as a joined comparison of the tested factors

with the control levels. In this case, we obtain

an answer to the important question about the

influence of the experimental factors on a given

characteristics. Further inference concerning

the comparison of particular means with the
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Irradiation Varieties of sugar beet

Colibri Evita Kawetina Maria

leaves roots leaves roots leaves roots leaves roots

Lamp 1

Lamp 2

Lamp 3

Lamp 4

Laser 1

Laser 2

Laser 3

Laser 4

Magnet. Field 1

Magnet. Field 2

Magnet. Field 3

Magnet. Field 4

Control

116.5

122.6

131.8

132.8

109.9

105.2

107.9

132.9

127.3

129.7

129.0

132.6

109.3

173.7

190.1

193.6

190.2

173.9

182.1

175.1

181.8

192.2

188.2

171.2

172.2

168.7

138.8

134.7

133.7

125.5

131.2

130.3

128.4

124.5

128.1

128.5

119.2

127.7

140.1

147.7

161.7

156.8

151.0

156.6

140.4

165.9

161.9

141.7

160.4

154.4

143.2

160.3

161.5

164.5

151.6

141.7

154.0

159.5

167.7

165.2

144.1

155.5

156.8

152.0

148.3

166.1

173.0

178.6

180.0

181.6

184.4

171.0

167.3

164.2

177.5

174.0

174.5

168.0

139.5

148.5

145.7

146.5

141.8

132.2

153.5

140.6

144.6

142.8

141.8

129.8

93.4

154.1

173.2

168.9

167.8

172.6

161.6

169.8

158.2

161.6

157.9

131.8

164.7

133.0

T a b l e 1. The summarised yields of sugar beet (t ha
-1

)



control mean can be carried out using

simultaneous multivariate multiple com-

parisons [16].

NUMERICAL EXAMPLE

The experiment, conducted according to

the split- plot scheme was arranged in 3 blocks

(r = 3). The varieties of sugar beet (A, a = 4)

have been compared, in relation to the seed sti-

mulation with a lamp, laser and an electro-

magnetic (B, b = 3) field and different doses of

this stimulation (C, c = 4). The a r control plots

have been sown with the seeds, which had not

been subjected to stimulation. Doses of C irra-

diation were treated as a factor occurring inside

B stimulation, since a lamp impulse is not com-

parable to a laser impulse or time of the magne-

tic field influence. Table 1 presents the summa-

rised yields from 3 blocks.

The following hypotheses were tested:

1. HZT
: About the equality of the vectors of the

grand means for the control plots and for the

plots, where the factors have been used. The

null hypothesis assumes, that the tested

factors jointly do not influence changes in the

values of the considered variables.

2. HA: About the equality of the vectors of the

variety effects.

3. H
B1 : About the equality of the vectors of the

lamp, laser and electromagnetic field effects.

The null hypothesis assumes that these three

levels of the B
1

factor: lamp, laser and

electromagnetic field affect the values of the

considered variables in the same way.

4. HC: About the equality of the vectors of the

impulse effects. The null hypothesis assumes

that the considered impulse numbers of the

factors: lamp, laser and electromagnetic field

affect the values of the considered variables in

the same way.

5. H
AB1 : About the equality of the vectors of the

interaction effects between variety A and

stimulation B. The null hypothesis assumes

that these three factors: lamp, laser and

electromagnetic field influence the values of

the variables of the considered varieties of the

sugar beet in the same way.

6. HZAB
: About the equality of the vectors of

changes of the effects for the particular

varieties caused by the seeds stimulation.

The sums of products (11) for the null

hypotheses given by matrices (8) and covarian-

ce matrices for errors are the following:

GE1 �
��

��
�

��
123 55 54 24

107138

. .

.
,

HR �
��

��
�

��
110144 5550

134344

. .

.
,

HA �
�

��
�

��
264887 6040

202074

. .

.
,

GE2 �
�

��
�

��
588 52 36 47

1789 59

. .

.
,

HB �
�

��
�

��
31333 25323

24083

. .

.
,

HC �
�

��
�

��
15582 10349

31649

. .

.
,

H
B1 �

�

��
�

��
5900 68 79

10707

. .

.
,

HT �
�

��
�

��
254 33 184 44

13376

. .

.
,

HAB �
�

��
�

��
85413 462 28

30841

. .

.
,

H
AB1 �

�

��
�

��
324 74 13767

104 70

. .

.
,

HZ �
�

��
�

��
52940 324 61

20371

. .

.
,

HAC �
�

��
�

��
254 33 184 44

13376

. .

.
.
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The inverses of the covariance matrices for

the errors are the following:

G
E1

1� �
�

��
�

��
00083 000042

000095

. .

.
,

G
E2

1� �
��

��
�

��
00017 0000035

000056

. .

.
.

According to the one variable analysis of

variance, we will test the hypotheses for each

source of variation separately. The maximum

eigenvalue & sof the matrices HG
-1

will be used

as the test function.

The hypothesis for the ZT contrast was ve-

rified by using the F statistic. For s=1 random

variable F
n

m

W

W
�

�

� �

1

11
has F distribution

with v1 = 2m + 2=1 and v2 = 2n + 2=101 d.f.

The W0 values exceed the critical W0.01 va-

lues (Table 2), which resultsed in rejecting the

null hypotheses. We have got not an answer to

the question which levels of factors and which

variables or else which combinations of varia-

bles and factors are responsible for rejecting the

null hypotheses. A more detailed inference will

be possible after using the multiple compari-

sons. The calculations were made by using a

computer Maple program, while a program for

the total statistical analysis of the experiments

with the control treatment according to the pre-

sented theory is under preparation now.

CONCLUSIONS

1. A new form of the model (3) with two

sub-models enables the analysis of variance for

the tested factors without the control, solely on

the basis of the model (2).

2. The analysis of variance for the tested

factors, conducted only on the basis of the

model (2), gives conclusions comparable with

the conclusions from another experiments with

the same factors, but without control.

3. Model (3) gives a better visualisation of

the experiment than the traditional model.

4. In this new form of the model, control

effects are separated in the beginning.

5. In the joined model (3), we have got, a r

degrees of freedom more than in (2) for each

variable. Additional degrees of freedom will be

used for the comparison of the tested factors

with the control, together or separately.

6. The new formula of the model is espe-

cially useful, when control treatment means that

no treatment is applied to the experimental

units, so effects are equal to zero.
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