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A bstract A relationship between the planar and
spatial tortuosities of a statistically isotropic crack network
in a clay soil is derived from the fact that connected cracks
outline peds and are their boundaries. Connectedness, a
parameter characterizing the crack network, determines this
relationship. The two- and three-dimensional tortuosities
vary from 1.5 t0 2.2 and from 1.4 to 3.25, respectively, when
connectedness decreases from unity to zero. A method
proposed for processing two-dimensional images of crack
networks enabled the estimation of two- and three-dimen-
sional tortuosities of an assumed isotropic crack network.
Two-dimensional images of seventeen different crack net-
works, available in the literature, were used to show the
application of the proposed dependency between planar and
spatial tortuosities.
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INTRODUCTION

One of the characteristics of a crack net-
work in a clay soil is tortuosity which deter-
mines the mean length of flow through cracks
and influences the hydraulic properties of the
soil. Tortuosity definition of crack network can
be introduced either as planar tortuosity of a
two-dimensional crack network of linear cracks
on a soil cross-section or as spatial tortuosity of
a three-dimensional crack network of planar
cracks. The main purpose of this work is to show
that, in the case of a statistically isotropic crack
network, there is a relationship between the

planar and the spatial tortuosities. It is clear that
to estimate experimentally the planar tortuosity
from a two-dimensional image of a crack net-
work is much simpler than to estimate the spa-
tial tortuosity from a three-dimensional image.
So the relationship may be used for estimation
of the spatial tortuosity from the planar one.
First we define the tortuosities of the crack
network in the two- and three-dimensional ca-
ses. Then we calculate them as functions of each
other on the basis of the distribution of ped
dimensions and show how to estimate them
from an experimental two-dimensional image
of a crack network which is assumed to be sta-
tistically isotropic. To evaluate the model we used
crack network images available in literature.

THEORY

One may consider the crack network in a
sufficiently small volume, as well as in any of
its cross-sections, as statistically homogeneous.
The crack network is characterized by a dimen-
sionless value, ¢ describing the extent of the
crack coalescence (the crack network connec-
tedness) and by an average spacing between
crack intersections with a straight line, d[1, 2, 4].
The connectedness, ¢, for a cross-sectional
plane of the crack network may depend on its
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orientation and differ from the spatial crack
network connectedness, c3 because natural crack
networks can be anisotropic [14]. For simpli-
city, we shall assume that crack networks are
locally isotropic when ¢, does not depend on the
orientation of the cross-section. In the isotropic
and homogeneous case the connectedness c;
may differ from the connectedness c, only be-
cause of cracks coplanar with the cross-section
under consideration. However, it may be as-
sumed that the number of these is very small
compared with the number of cracks intersect-
ing the cross-section, and one may consider c,
= ¢35 = c. In the following, results based on the
assumption of local crack network isotropy will
be compared with experimental data.

In the two dimensional (planar) case, the
tortuosity of a crack network, T, is defined as:

=L,/ L ¢y

where L1 is the number of cracks intersecting
the side of a unit square and which are
connected with other cracks within it forming
continuous through (linear) paths to the
opposite side (in the following, straight sections
of such a path are referred to as (one dimen-
sional) through-connected cracks); Lais the
total length of through-connected cracks per
unit area. Similarly in the three-dimensional
case the tortuosity of a (spatial) crack network,
T3 is defined as:

where L2is the total length of the traces of
cracks intersecting the side of a unit cube and
connected with cracks within it forming con-
tinuous, through (areal) paths to its opposite side
(in the following planar sections of such paths
are referred to as (two dimensional) through-
connected cracks); L3 is the total surface area of
the through-connected cracks per unit volume.

The key point of the approach to estimate
the values of L, L, and L; is: connected cracks
outline, or nearly outline, peds and are their
boundaries. Consequently L), L,, and L3 may
be estimated from the distributions of fragment
dimensions in the one-, two- and three-dimen-
sional cases, respectively (“a one dimensional
fragment” is the spacing between intersections

with a line of two neighboring connected
cracks). Using the distributions derived from
the model of multiple cracking and fragmenta-
tion [1,2,4], with the parameters: connected-
ness, ¢ and mean crack spacing, d one can get
the expression:

L,=B,(c)/d n=1,2,3 (3)

where Bp (¢) are dimensionless functions of the
connectedness. Accordingto Eqs (1), (2) and (3)
the tortuosities are:

T,(c)=B,(c)/B,(c), n=2,3. (4

Equation (4) (for » = 2 and 3) shows that
the tortuosity 73, as well as the tortuosity 75, do
not depend on the scale factor (the mean spacing
between cracks) d, but only on the connected-
ness ¢ as the parameter of crack network. It is
assumed that the shape of a two- or a three-di-
mensional fragment is, on the average, a square
or a cube, respectively. The line in Fig. 1 shows
the dependency 75(7) resulting from the depen-
dencies T,(c) and T3(c) for an isotropic and ho-
mogeneous crack network. As can be seen, the
tortuosity T increases from 1.4 to 3.25 and the
tortuosity T, from 1.5 to 2.2 when the connec-
tedness ¢ decreases from one to zero.

MATERIALS AND METHODS

In this work we are interested in finding
tortuosities 7, and 75 from two-dimensional
images of crack networks. The images of crack
networks can be: a) at the soil surface; b) at dif-
ferent cross-sections of soil cores or blocks; and
c) at the surface of specially-prepared soil sam-
ples. A number of such images are available in
the literature [7,9-14] and were used for evalu-
ation of the model. They are shown in Fig. 2 on
a much smaller scale than the originals. They
are numbered according to decreasing connec-
tedness. Images 1-4, 6, 9, 11, 13 (from Fig. 2 of
Guidi et al. [7]) are photographs of eight repli-
cates of artificially-prepared samples of the 1-2
mm fractions of an Italian Fluvisol, >48% clay
(images 1-4) and aRegosol,> 46% clay (images
6,9, 11, 13). Image 5 from Ringrose-Voase and
Bullock ([10], Fig. 4(c)) is a photograph of a
horizontal cross-section of a Windsor soil, at
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Fig. 1. Predicted mean three-dimensional tortuosity 75 of an isotropic crack network as a function of the two-dimensional
tortuosity 7, (solid line) and experimental data (points) of clay soils (the numbers refer to soils shown in Fig. 2).

depth 46 cm. Images 7 and 12 are Fig. 7 and the
lower part of Fig. 1, respectively, of Scott et al.
[13]; they are photographs of horizontal cross-
sections of clayey subsoils of the Swanwick
series at a depth of 46 cm and of the Windsor
series at a depth of 35 cm, respectively. Images

8 and 16 are Fig. 1(5) and Fig. 1(5), respec-

tively, of Ringrose-Voase and Nys [11]; they
are photographs of 12.7x10.16 cm horizontal
cross-sections of a blocky and a prismatic soil
sample, respectively, from North Wales at a
depth of 7 cm. Image 10 is Fig. 1 of Ringrose-
Voase [9] of a cross-section of a soil from
Wales. Images 14 and 15 are two parts of Fig. 1
of Scott et al. [12]; the photographs are of 4.8x
7.2 cm soil thin sections cut at random angles of
both elevation and azimuth from a profile of the
Windsor-series-of-London clay in Essex at
depth 35 cm. Image 17 is the right part of Fig.
4(b) of Velde et al. [14] which is a photograph
of a 5x10 cm soil vertical thin section from a
vertisol profile (>65% clay) in Southern Italy
at a depth of 155 cm.

The procedure of preparing the images was
as follows:
- the original image was magnified to a linear
dimension of ~20 cm;
- a strip of the boundary of the magnified image,
~1.5 cm wide, was excluded if it was distorted
to allow to get a “working window” square of a
side length of 14-23 cm;

- a grid with a spacing of 1cm was drawn on the
working window (we designated the total num-
ber of the horizontal and vertical lines by io).

In the image working window, a line section
is considered to be the trace of a spatial crack
if the ratio of its length to width 3 and the length
2 mm. A straight section is considered to be a se-
parate crack. A separate crack whose two ends
are connected with other separate cracks is re-
ferred to as a connected crack, otherwise, as an
isolated crack. In a series of connected cracks
that cross the entire working window, in any direc-
tion, each crack is referred to as a through-conec-
ted crack, otherwise, as a locally-connected crack.

The mean two dimensional tortuosity 7 for
the given image is estimated by:

T2=Ltc/Lch (5)

where Ncis the mean number of the intersec-
tions of through-connected cracks with a line of
length Ly which is the dimension of the win-
dow. This mean number was calculated on the basis
of io profiles of the grid. Ly is the total length of
the through-connected cracks, measured within
the window.

To obtain data for the estimation of the
mean three-dimensional tortuosity T';, of a sta-
tistically homogeneous and isotropic spatial-
crack network, one can use any two-dimen-
sional image of this crack network. Considering
cracks in a thin layer of thickness /# one may
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Fig. 2. Two-dimensional crack networks images of clay soils used for experimental estimation of the values 75 and T5.

assume that: 1) the spatial crack network in the
layer is statistically homogeneous; and 2) each
straight section of length / of the two-dimen-
sional image of the crack network on the face of
the layer corresponds to a plane crack within it.
If the angle between the normal to the layer and
the crack plane is 6, then the surface area of the
crack in the layer is equal to /A/cos 6. The total
surface area, S, of all the through, spatially-con-
nected cracks in the layer is:

St =Zl,~h/cos€,~ 6)
1

where the index i correspond to a separate

straight crack trace in the two dimensional ima-

ge. According to the definition, the tortuosity of

the statistically-homogeneous, spatial-crack net-

work is:

Ty =S8,/ Lich= (zli /cos@i)/(zli]. (7)
i i
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This is the three-dimensional tortuosity in
the vicinity of the cross-sectional image under
consideration.

For any arbitrary i th connected crack in the
layer the corresponding angle 6, has a random
value in the range:

®

where 0y, is the maximum possible value of the
angle 6;. Herewith 6, < 71/2 because the crack
must intersect with the cross-section plane.
Before estimating the angle 6, it is worth noting
that in the fragment-dimension distribution and
the specific fragment surface, any fragment is
characterized by its largest dimension x, only.
However, the boundary value 6;, of the random
values of ; is determined by geometrical con-
siderations of the mean fragment shape. To de-
fine the three dimensions of a fragment of an
arbitrary convex shape we consider the two di-
mensions of its largest face and the dimension
normal to the face and designate them, in the
order of decreasing values as x, y, z. The shape
of the fragment is characterized by the ratios y/x
and z/x. The mean fragment shape, that is the
mean shape of a set of fragments (outlined by
connected cracks), is characterized by the ensemble
averages y/rx and z/x (%<y—/x<1). Defining
z/x=a<]1 then, if the fragment adjoins the sur-
face of the cross-section from below by its (x,
y)side (Fig. 3), the angle 6;, between the normal
to the cross-section, » and the fragment face
(crack) in the layer, can not surpass arctan (x/z),
or otherwise must be, on the average, less than
arctan(1/a). If the adjoining side is (y, z) or (z,
x) the limit value of the corresponding angle will
be even smaller. Thus:

0<6,<6,

0,, = arctan (1/a).

®

Data from observations by Repin [8], stren-
gthened by theoretical estimates of Chertkov [3]
show that for natural rock blocks z/x = a =0.5.
This value may be applied to fragments outlined
by shrinkage cracks in drying clay soils as
shown by Chertkov [4] (it is noteworthy that for
soil aggregates this ratio z/x = 0.63-0.65 as

cross-section surface

0;<arctan (x/z)

Fig. 3. Sketch for estimating the value of 6. Values of
x>y >z give the three dimensions of a fragment (ped), of
an arbitrary convex shape, adjoining from below to the
cross-section surface by the side (x, »). 6, is the random angle
between the normal to the cross-section and the plane of the
i th crack.

shown by Dexter et al. [6] and Dexter [5].
Because of the experimental character of the
value a=0.5 one ought to replace a in Eq. (9)
by a -20, where 0 is the standard deviation of a
(at 2 0.95 confidence level). Since the fragment
dimensions were measured to an accuracy of
5-7 % that of their ratio was 10-15 %. Hence,
a-20=0.35 and:

6,, = arctan (1/0.35) = 70.7°.  (10)

The procedure for determining the random
intersection angle 6,in Eq. (7) is as follows. As
a consequence of the crack-network isotropy, it
is assumed that the values of the random angle
0, for any i are uniformly distributed in the range
given by Eq. (8). Moduli of the random azi-
muths ¢; of the crack traces on the cross-sec-
tional plane are also uniformly distributed in the
range 0<|¢;| < /2. So, we may take as a
random value of 6, (if the number of cracks is
large):

01 =lpil-22. an

In the numerical estimation of the tortuosity
T3, the angles ¢; were measured relatively to the
horizontal side of the working window.

RESULTS AND DISCUSSION

The results of the estimations of T, and
T5 for the crack networks of the images in Fig. 2
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are shown by the points in Fig. 1 along with the
theoretical line. The numbers correspond to
number of the image in Fig. 2.

The experimental errors of ¢, T, and T3 may
be estimated as follows. Images 1,2, 3, and 4 in
Fig. 2 are of the same soil and the same condi-
tions [7]. The same is true also for images 6,
9-11, and 13 in Fig. 2 [7] and for images 14 and
15 in Fig. 2 [12]. Hence, it is possible to assess
the errors of ¢, and for each group of images.
The standard deviations DT2 s DT3 found for

images 1- 4 are: DT2 =(0.03, DT3 =(0.03, for
images 6, 9, 11, and 13 are: DT2 =0.05,
DT3 =0.09 and for images 14 and 15 are:
Dr, =0.03, Dy, =0.04.

There are three possible sources for the
discrepancies between the experimental points
and the theoretical curves in Fig. 1:

- the assumption of a square shape for planar
fragments and cubic shape for volumetric frag-
ments in the calculations of the mean tortu-
osities, T2 and T3, respectively;

- the assumption of a statistically-isotropic
crack network (equal values of connectedness
for the two- and three-dimensional cases and
calculating T3on the basis of the two-dimen-
sional image);

- the procedure for counting the number of
cracks of different types within the working
window (the ratio of the crack length to width>
3 and the crack length > 2mm).

One should note with regard to the choice
of the fragment shapes that when using two
alternative simple fragment shapes -triangle and
tetrahedron or circle and sphere - the discrepan-
cies between the theoretical curve of T (T,) and
the experimental points in Fig. 1 are much larger
and more than three standard deviations. The
estimates of the experimental errors of T, and
T;and the distribution of the points around the
curves in Fig. 1 show that the discrepancies do
not, as a rule, surpass two standard deviations.
Hence, one may say that, in spite of the approxima-
tions used, results of the suggested model and
those of published data of images of crack net-
work in clay soils are in reasonable agreement.

CONCLUSION

The theoretical estimation of tortuosities of
planar and spatial crack networks were based on
the relation between cracks and fragments - the
faces of fragments are defined by connected
cracks. With a statistically-isotropic crack net-
work, the two- and three-dimensional tortuosi-
ties, T, and T3, respectively depend only on the
connectedness ¢ of the crack network and are
related to each other. An analytical expression
which may be plotted graphically, was found for
the function T3(7,). A method for processing
two-dimensional images of crack networks is
proposed for estimating the values of T, and
T3 (assuming crack network isotropy). Results
obtained from seventeen two-dimensional im-
ages published in seven works do not contradict
the predicted dependency T'5(T).
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